´
110
S. Stankovic et al. / Tetrahedron Letters 53 (2012) 107–110
7. Stankovic´, S.; Catak, S.; D’hooghe, M.; Goossens, H.; Abbaspour Tehrani, K.;
Bogaert, P.; Waroquier, M.; Van Speybroeck, V.; De Kimpe, N. J. Org. Chem. 2011,
76, 2157–2167.
CH3CN, Δ
iPrOH, Δ
8. De Kimpe, N.; De Smaele, D. Tetrahedron 1995, 51, 5465–5478.
9. (a) De Kimpe, N.; Jolie, R.; De Smaele, D. J. Chem. Soc., Chem. Commun. 1994,
1221–1222; (b) D’hooghe, M.; Waterinckx, A.; De Kimpe, N. J. Org. Chem. 2005,
70, 227–232; (c) Sulmon, P.; De Kimpe, N.; Schamp, N.; Tinant, B.; Declercq, J.-P.
Tetrahedron 1988, 44, 3653–3670.
N
R
R
Br
N
N
8
X
Br
ˇ
ˇ
10. (a) Mangelinckx, S.; Zukauskaite, A.; Buinauskaite, V.; Šackus, A.; De Kimpe, N.
˙
˙
23
Br
N
9 (R = 4-MeC6H4CH2)
11 (R = tBu)
Tetrahedron Lett. 2008, 49, 6896; (b) Gaertner, V. R. J. Org. Chem. 1970, 35,
H
X = OR, OAr, OH, CN
COOH, CH2NH2
CH2OH
Br
ˇ
ˇ
3952–3959; (c) Zukauskaite, A.; Mangelinckx, S.; Buinauskaite, V.; Šackus, A.;
˙
˙
10
De Kimpe, N. Amino Acids 2011, 41, 541–558.
11. (a) Stankovic´, S.; D’hooghe, M.; De Kimpe, N. Org. Biomol. Chem. 2010, 8, 4266–
4273; (b) De Kimpe, N.; Verhé, R.; De Buyck, L.; Schamp, N. J. Org. Chem. 1981,
46, 2079–2081; (c) De Kimpe, N.; Verhé, R.; De Buyck, L.; Schamp, N. Bull. Soc.
Chim. Belg. 1983, 92, 233–239; (d) Vilhelmsen, M. H.; Ostergaard, L. F.; Nielsen,
M. B.; Hammerum, S. Org. Biomol. Chem. 2008, 6, 1773–1778.
Scheme 6. 3-Bromo-3-methylazetidines
preparation of 3-substituted 3-methylazetidines 23.
9
and 11 as building blocks for the
15 min, 150 W) and subsequent neutralization with a solution of
hydrochloric acid (1 M) gave the corresponding new amino acid
21. Interestingly, two isomeric structures (ratio 3/2) of azetidine
21 were observed upon NMR analysis (CD3OD), which can be
attributed to the zwitterionic nature of this compound providing
two diastereomeric counterparts. The purification of amino acid
21 on Dowex H+ (NH4OH) afforded ammonium 3-methyl-1-(4-
methylbenzyl)azetidine-3-carboxylate 22 as a single isomer in
pure form.17 These observations further support the synthetic util-
ity of 3-bromo-3-methylazetidines as substrates for nucleophilic
displacements, for example, toward the synthesis of versatile 3-
methylazetidine-3-carbonitriles.
In conclusion, efficient syntheses of 3-bromo-3-methylazeti-
dines 9 and 11 were disclosed starting from 2-bromomethyl-2-
methylaziridine 8 and b,c-dibrominated amine 10, respectively.
Through a number of examples, the azetidines 9 and 11 were
shown to easily undergo nucleophilic substitution with different
nucleophiles, providing a convenient method for the preparation
of new synthetically and biologically attractive 3-substituted azeti-
dines 23 such as 3-alkoxy-, 3-aryloxy-, 3-hydroxy-, 3-cyano-, 3-
carboxy-, 3-(aminomethyl)-, and 3-(hydroxymethyl)azetidines
(Scheme 6).
12. Stankovic´, S.; D’hooghe, M.; Dewulf, J.; Bogaert, P.; Jolie, R.; De Kimpe, N.
Tetrahedron Lett. 2011, 52, 4529–4532.
13. As a representative example, the synthesis of 1-t-butyl-3-(4-ethylphenoxy)-3-
methylazetidine 15b is described here. 3-Bromo-1-t-butyl-3-methylazetidine
11 (1.03 g, 5 mmol) was dissolved in THF (10 mL), after which 4-ethylphenol
(0.61 g, 1 equiv) and K2CO3 (1.38 g, 2 equiv) were added, and the mixture was
stirred for 48 h under reflux. The reaction mixture was poured into an aqueous
sodium hydroxide solution (1 M, 15 mL) and extracted with CH2Cl2
(3 Â 15 mL). The combined organic extracts were washed with H2O
(2 Â 15 mL) and brine (15 mL). Drying (MgSO4), filtration of the drying agent
and evaporation of the solvent afforded 1-t-butyl-3-(4-ethylphenoxy)-3-
methylazetidine 15b (0.88 g, 71%), which was purified by column
chromatography (CH2Cl2/MeOH 96/4, Rf = 0.15) in order to obtain an
analytically pure sample. 1-t-Butyl-3-(4-ethylphenoxy)-3-methylazetidine
15b: Yield 71%; 1H NMR (270 MHz, CDCl3)
d 0.97 (9H, s), 1.21 (3H, t,
J = 7.6 Hz), 1.68 (3H, s), 2.58 (2H, q, J = 7.6 Hz), 3.32 (2H, d  d, J = 6.9, 1.6 Hz),
3.45 (2H, d, J = 6.9), 6.64–7.07 (4H, m). 13C NMR (67.8 MHz, CDCl3) d 15.8, 22.0,
24.2, 27.9, 52.0, 58.8, 72.1, 116.7, 128.6, 136.5, 153.2. IR (NaCl, cmÀ1
m
)
max = 2958, 1602, 1503, 1356, 1310, 1228, 828. MS (70 eV) m/z (%) 247 (M+,
5), 232 (16), 163 (15), 162 (100), 147 (12), 133 (36), 122 (21), 120 (14), 119
(57), 107 (44), 86 (28), 70 (30), 57 (18), 55 (14).
14. As a representative example, the synthesis of 3-methyl-1-(4-methylbenzyl)-3-
azetidinol
16b
is
described
here.
3-Bromo-3-methyl-1-(4-
methylbenzyl)azetidine 9 (1.27 g, 5 mmol) was added to a two-phase solvent
system (H2O/CH2Cl2 9/1, 15 mL), after which KOH (1.40 g, 5 equiv) was added,
and the mixture was stirred for 10 h under reflux. The reaction mixture was
poured into water (15 mL) and extracted with CH2Cl2 (3 Â 15 mL). The
combined organic extracts were washed with H2O (2 Â 15 mL) and brine
(15 mL). Drying (MgSO4), filtration of the drying agent and evaporation of the
solvent afforded 3-methyl-1-(4-methylbenzyl)-3-azetidinol 16b as white
crystals (0.92 g, purity >95% based on NMR analysis). 3-Methyl-1-(4-
methylbenzyl)-3-azetidinol 16b: White crystals; Mp = 85.3 °C. Yield 96%; 1H
NMR (300 MHz, CDCl3) d 1.40 (3H, s), 2.25 (3H, s), 2.99, and 3.20 (4H, 2 Â d,
J = 6.9 Hz), 3.53 (3H, s), 7.02–7.10 (4H, m). 13C NMR (75 MHz, ref = CDCl3) d
Acknowledgments
This work was supported by the Research Foundation-Flanders
(FWO-Vlaanderen) and the Research Board of Ghent University
(BOF-GOA).
21.2, 26.1, 63.2, 68.0, 68.9, 128.6, 128.8, 134.9, 136.8. IR (neat, cmÀ1
OH = 3359. MS (70 eV) m/z (%) 192 (M++1, 100).
)
m
15. (a) Okutani, T.; Kaneko, K.; Masuda, K. Chem. Pharm. Bull. 1974, 22, 1490–1497;
(b) Okutani, T.; Masuda, K. Chem. Pharm. Bull. 1974, 22, 1498–1505; (c) Higgins,
R. H.; Doomes, N. H.; Cromwell, N. H. J. Heterocycl. Chem. 1971, 8, 1063–1067.
16. Synthesis of 3-aminomethyl-1-t-butyl-3-methylazetidine 20. To an ice-cooled
solution of 1-t-butyl-3-methylazetidine-3-carbonitrile 17a (0.76 g, 5 mmol) in
dry diethyl ether (10 mL), LiAlH4 (0.38 g, 2 equiv) was slowly added, and the
reaction mixture was stirred first for 3 h at 0 °C, and then for 14 h at room
temperature. The resulting mixture was poured cautiously into water (15 mL)
and extracted with Et2O (3 Â 15 mL). The combined organic extracts were
washed with H2O (2 Â 15 mL) and brine (15 mL). Drying (MgSO4), filtration of
the drying agent and evaporation of the solvent afforded 3-aminomethyl-1-t-
butyl-3-methylazetidine 20 (0.76 g, 97%) in high purity (purity >95% based on
References and notes
1. (a) Cromwell, N. H.; Phillips, B. Chem. Rev. 1979, 79, 331–358; (b) Moore, J. A.;
Ayers, R. S. In Chemistry of Heterocyclic Compounds-Small Ring Heterocycles;
Hassner, A., Ed.; Wiley: New York, NY, 1983; pp 1–217. Part 2; (c) Davies, D. E.;
Storr, R. C. In Comprehensive Heterocyclic Chemistry; Lwowski, W., Ed.;
Pergamon: Oxford, 1984; Vol. 7, pp 237–284. Part 5; (d) Singh, G. S.;
D’hooghe, M.; De Kimpe, N. Azetidines, Azetines, and Azetes: Monocyclic In
Comprehensive Heterocyclic Chemistry III, a review of the literature 1995–2007;
Katritzky, A., Ramsden, C., Scriven, E., Taylor, R., Eds.; Elsevier: Oxford, 2008;
Vol. 2, pp 1–110; (e) Couty, F.; Evano, G. Org. Prep. Proced. Int. 2006, 38, 427–
465; (f) Ferraris, D.; Belyakov, S.; Li, W. X.; Oliver, E.; Ko, Y. S.; Calvin, D.; Lautar,
S.; Thomas, B.; Rojas, C. Curr. Top. Med. Chem. 2007, 7, 597–608.
2. (a) Bagal, S. K.; Davies, S. G.; Lee, J. A.; Roberts, P. M.; Russell, A. J.; Scott, P. M.;
Thomson, J. E. Org. Lett. 2010, 12, 136–139; (b) Feula, A.; Male, L.; Fossey, J. S. Org.
Lett. 2010, 12, 5044–5047; (c) Brown, M. J.; Clarkson, G. J.; Inglis, G. G.; Shipman,
M. Org. Lett. 2011, 13, 1686–1689; (d) Couty, F.; Durrat, F.; Prim, D. Tetrahedron
Lett. 2003, 44, 5209–5212; (e) Couty, F.; Evano, G. Synlett 2009, 3053–3064; (f)
Couty, F. Sci. Synth. 2009, 773–817; (g) Couty, F.; Durrat, F.; Evano, G. Targets
Heterocycl. Syst. 2005, 9, 186–210; (h) Brandi, A.; Cicchi, S.; Cordero, F. M. Chem.
Rev. 2008, 108, 3988–4035; (i) Couty, F.; Evano, G.; Prim, D. Mini-Rev. Org. Chem.
2004, 1, 133–148;(j)Couty, F.;David, O.;Durrat, F.; Evano, G.; Lakhdar, S.; Marrot,
J.; Vargas-Sanchez, M. Eur. J. Org. Chem. 2006, 3479–3490.
NMR analysis). 3-Aminomethyl-1-t-butyl-3-methylazetidine 20: Yield 97%; 1
H
NMR (270 MHz, CDCl3) d 0.94 (9H, s), 1.18 (3H, s), 1.63 (2H, br s), 2.78 (2H, s),
2.91, and 3.03 (4H, 2 Â d, J = 7.3 Hz). 13C NMR (67.8 MHz, CDCl3) d 22.7, 24.1,
33.4, 50.9, 51.6, 55.2. IR (NaCl, cmÀ1
) mNH2 = 3680–3000. MS (70 eV) m/z (%) no
M+, 141 (M+–Me, 58), 84 (36), 72 (72), 70 (100), 57 (69), 55 (47), 49 (35).
17. Synthesis of ammonium 3-methyl-1-(4-methylbenzyl)azetidine-3-carboxylate
22. 1-(4-Methylbenzyl)azetidine-3-carbonitrile 17b (0.20 g, 1 mmol) was
dissolved in EtOH/H2O (5/1, 5 mL), after which KOH (0.28 g, 5 equiv) was
added. The mixture was placed in a 6-mL sealed glass vessel, provided with an
appropriate stirring bar and subjected to microwave conditions (150 °C,
15 min, 150 W). The reaction mixture was neutralized with a solution of
hydrochloric acid (1 M) to pH = 7 and water was evaporated under high
vacuum. Purification of amino acid 21 (two isomeric forms confirmed by NMR
analysis) by means of ion-exchange chromatography on Dowex H+ (50 Â 8-
3. Fyfe, M. C. T.; Gattrell, W.; Rasamison, C. M. PCT Int. Appl. 2007, WO
2007116230 Al; Chem. Abstr. 2007, 147, 469218.
4. Isabel, E.; Oballa, R.; Powell, D.; Robichaud, J. PCT Int. Appl. 2007, WO
2007143823 Al; Chem. Abstr. 2007, 148, 78872.
5. Josyula, V. P. V. N.; Renslo, A. R. PCT Int. Appl. 2007, WO 2007004049 Al; Chem.
Abstr. 2007, 146, 142631.
6. Van Brabandt, W.; Mangelinckx, S.; D’hooghe, M.; Van Driessche, B.; De Kimpe,
N. Curr. Org. Chem. 2009, 13, 829–853.
100)
afforded
ammonium
3-methyl-1-(4-methylbenzyl)azetidine-3-
carboxylate 22 (0.20 g, 85%). White crystals; Mp >350 °C. Yield 85%; 1H NMR
(300 MHz, CD3OD) d 1.41 (3H, s), 2.24 (3H, s), 3.73, and 4.20 (4H, 2 Â d,
J = 10.7 Hz), 4.20 (2H, s), 7.16–7.27 (4H, m). 13C NMR (75 MHz, CD3OD) d 21.3,
23.3, 42.3, 59.4, 63.7, 128.6, 131.0, 131.1, 141.2, 180.5. IR (neat, cmÀ1
)
m
CO = 1603. MS (70 eV) m/z (%) 218 (M++1, 100).