Herein, we report a facile and metal-free oxidative
conversion of silyl enol ethers to R,β-unsaturated ketones
employing oxoammonium salts, which can be a useful
alternative to current methods,12ꢀ16 such as the Pd(II)-
based SaegusaꢀIto reaction,12 selenylationꢀselenoxide
elimination method,13 Mukaiyama reaction,14 and a hy-
pervalent-iodine-based method.15
reaction at low temperatures (entries 1, 2). The chemos-
electivity for the R,β-unsaturated ketone was further im-
proved by switching the TMS group to the TBS group
(entries 2, 3).17 We next screened a panel of oxoammonium
salts and found that the chemoselectivity is sensitive to
the structure of the oxoammonium salt (entries 3ꢀ6),
for which the best result was obtained in the case of
AZADOþBF4ꢀ (entry 3). It is interesting to point out that
TEMPOþBF4ꢀ (1) gave the R-aminooxy ketone 7d as the
major product, showing an interesting contrast to less-
hindered oxoammonium salts (entry 6).
Table 1. Optimization of Reaction Conditions for R,β-Unsatu-
rated Ketone 6
Figure 1. Structures of oxoammonium salts.
Oxoammonium salts derived from TEMPO react with
enol ethers to give R-aminooxy ketones.3 Thus, we exam-
ined an R-aminooxylation reaction of silyl enol ether 5
employing the azaadamantane-derived oxoammonium
salts 2ꢀ410 and surprisingly confirmed that R,β-unsatu-
rated ketone 6 was generated along with the anticipated
R-aminooxy ketone 7a (Scheme 1).
Scheme 1. Formation of R,β-Unsaturated Ketone through
Treatment of Silyl Enol Ether with Oxoammonium Salt
To explore the effect of counteranion of oxoammonium
salts, we screened the various salts (Table 2). Although
there were no significant differences in the reactivity,
apparent differences were observed in the chemoselectivity
Prompted by the promising use of the side reaction, we
sought optimal conditions to enhance the yield of the R,β-
unsaturated ketone 6 (Table 1). It was found that the yield
and chemoselectivity were improved by carrying out the
(10) (a) Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am.
Chem. Soc. 2006, 128, 8412–8413. (b) Shibuya, M.; Tomizawa, M.;
Sasano, Y.; Iwabuchi, Y. J. Org. Chem. 2009, 74, 4619–4622. (c)
Shibuya, M.; Sato, T.; Tomizawa, M.; Iwabuchi, Y. Chem. Commun.
2009, 1739–1741. (d) Tomizawa, M.; Shibuya, M.; Iwabuchi, Y. Org.
Lett. 2009, 11, 1829–1831. (e) Shibuya, M.; Osada, Y.; Sasano, Y.;
Tomizawa, M.; Iwabuchi, Y. J. Am. Chem. Soc. 2011, 133, 6497–6500.
(f) Shibuya, M.; Sasano, Y.; Tomizawa, M.; Hamada, T.; Kozawa, M.;
Nagahama, N.; Iwabuchi, Y. Synthesis 2011, 3418–3425. (g) Hayashi,
M.; Sasano, Y.; Nagasawa, S.; Shibuya, M.; Iwabuchi, Y. Chem. Pharm.
Bull. 2011, 59, 1570–1573.
(5) (a) Shibuya, M.; Tomizawa, M.; Iwabuchi, Y. J. Org. Chem. 2008,
73, 4750–4752. (b) Shibuya, M.; Tomizawa, M.; Iwabuchi, Y. Org. Lett.
ꢀ
2008, 73, 4715–4718. (c) Vatele, J.-M. Synlett 2008, 1785–1788. (d)
ꢀ
ꢀ
Vatele, J.-M. Synlett 2009, 2143–2145. (e) Vatele, J.-M. Tetrahedron
2010, 66, 904–912.
(6) For oxidative coupling, see: (a) Kirchberg, S.; Vogler, T.; Studer,
A. Synlett 2008, 2841–2845. (b) Vogler, T.; Studer, A. Org. Lett. 2008,
10, 129–131. (c) Maji, M. S.; Pfeifer, T.; Studer, A. Angew. Chem., Int.
Ed. 2008, 47, 9547–9550. (d) Maji, M. S.; Studer, A. Synthesis 2009, 14,
2467–2470. (e) Maji, M. S.; Murarka, S.; Studer, A. Org. Lett. 2010, 12,
3878–3881. (f) Maji, M. S.; Pfeifer, T.; Studer, A. Chem.;Eur. J. 2010,
16, 5872–5875.
(11) Yamakoshi, H.; Shibuya, M.; Tomizawa, M.; Osada, Y.; Kanoh,
N.; Iwabuchi, Y. Org. Lett. 2010, 12, 980–983.
(12) (a) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011–
1013. (b) Tsuji, J.; Minami, I.; Shimizu, I. Tetrahedron Lett. 1983, 24,
5635–5638. (c) Tsuji, J.; Minami, I.; Shimizu, I.; Kataoka, H. Chem.
Lett. 1984, 1133–1136. (d) Minami, I.; Takahashi, K.; Shimizu, I.;
Kimura, T.; Tsuji, J. Tetrahedron 1986, 42, 2971–2977. (e) Larock,
R. C.; Hightower, T. R. Tetrahedron Lett. 1995, 36, 2423–2426. (f) Yu,
J.-Q.; Wu, H.-C.; Corey, E. J. Org. Lett. 2005, 7, 1415–1417.
(13) Trost, B. M.; Saltzmann, T. N.; Hiroi, K. J. Am. Chem. Soc.
1976, 98, 4887–4902.
(7) For carboaminohydroxylation of olefins, see: (a) Heinrich, M. R.;
Wetzel, A.; Kirschstein, M. Org. Lett. 2007, 9, 3833–3835. (b) Kirchberg,
€
S.; Frohlich, R.; Studer, A. Angew. Chem., Int. Ed. 2009, 48, 4235–4238.
(8) For oxidation at benzylic and allylic positions, see: (a) Breton, T.;
Liaigre, D.; Belgsir, E. M. Tetrahedron Lett. 2005, 46, 2487–2490. (b)
Pradhan, P. P.; Bobbitt, J. M.; Bailey, W. F. J. Org. Chem. 2009, 74,
(14) Mukaiyama, T.; Matsuo, J.; Kitagawa, H. Chem. Lett. 2000, 29,
1250–1251.
~
9524–9527. (c) Richter, H.; Mancheno, O. G. Eur. J. Org. Chem. 2010,
4460–4467.
(15) (a) Magnus, P.; Evans, A.; Lacour, J. Tetrahedron Lett. 1992, 33,
2933–2936. (b) Magnus, P.; Lacour, J. J. Am. Chem. Soc. 1992, 114, 769–
771. (c) Nicolaou, K. C.; Gray, D. L. F.; Montagnon, T.; Harrison, S. T.
Angew. Chem., Int. Ed. 2002, 41, 996–1000.
(9) For biomimetic oxidation of aldehydes, see: Guin, J.; Sarkar,
S. D.; Grimme, S.; Studer, A. Angew. Chem., Int. Ed. 2008, 47, 8727–
8730.
Org. Lett., Vol. 14, No. 1, 2012
155