Chemistry - A European Journal p. 12932 - 12945 (2011)
Update date:2022-08-06
Topics:
Liu, Xin-Yuan
Guo, Zhen
Dong, Sijia S.
Li, Xiao-Hua
Che, Chi-Ming
An efficient method for the synthesis of tertiary amines through a gold(I)-catalyzed tandem reaction of alkynes with secondary amines has been developed. In the presence of ethyl Hantzsch ester and [{(tBu) 2(o-biphenyl)P}AuCl]/AgBF4 (2 mol %), a variety of secondary amines bearing electron-deficient and electron-rich substituents and a wide range of alkynes, including terminal and internal aryl alkynes, aliphatic alkynes, and electron-deficient alkynes, underwent a tandem reaction to afford the corresponding tertiary amines in up to 99 % yield. For indolines bearing a preexisting chiral center, their reactions with alkynes in the presence of ethyl Hantzsch ester catalyzed by [{(tBu)2(o-biphenyl)P}AuCl]/AgBF 4 (2 mol %) afforded tertiary amines in excellent yields and with good to excellent diastereoselectivity. All of these organic transformations can be conducted as a one-pot reaction from simple and readily available starting materials without the need of isolation of air/moisture-sensitive enamine intermediates, and under mild reaction conditions (mostly room temperature and mild reducing agents). Mechanistic studies by NMR spectroscopy, ESI-MS, isotope labeling studies, and DFT calculations on this gold(I)-catalyzed tandem reaction reveal that the first step involving a monomeric cationic gold(I)-alkyne intermediate is more likely than a gold(I)-amine intermediate, a three-coordinate gold(I) intermediate, or a dinuclear gold(I)-alkyne intermediate. These studies also support the proposed reaction pathway, which involves a gold(I)-coordinated enamine complex as a key intermediate for the subsequent transfer hydrogenation with a hydride source, and reveal the intrinsic stereospecific nature of these transformations observed in the experiments. Producing tertiary amines: The AuI-catalyzed tandem reaction of alkynes with secondary amines provides simple and efficient access to highly substituted tertiary amines with excellent yields and good to excellent diastereoselectivity. Mechanistic studies confirm that a possible reaction pathway involves intermolecular hydroamination via a monomeric cationic gold(I)-alkyne intermediate and subsequent transfer hydrogenation via a gold(I)-coordinated enamine intermediate. Copyright
View MoreShandong Topscience Biotech Co., Ltd.
Contact:0633-2619278
Address:No. 98 Lanshan West Road, Lanshan District, Rizhao, Shandong Province, P.R. of China
Shandong Bolode Bio-Technology Co., LTD
Contact:+86-0531-58966870
Address:136 Jingyi Road,Huaiyin District,Jinan,Shandong,China
Purestar Chem Enterprise Co.,Ltd
website:http://www.purestarchem.com
Contact:05722157374
Address:no235.huanchengdong Rd
Sanming Coffer Fine Chemical Industrial Co., Ltd
website:http://www.cofferxm.com/
Contact:+86-598-5853979
Address:Jin-sha Yuan Chuang-ye Park,Hi-Tech Development Zone,Sanming City P.R.China
Xi'an Galaxy Chemicals CO., Ltd
Contact:86-29-89380370
Address:No.8, Gaoxin three road, Xi'an city.
Doi:10.1021/ja111201c
(2011)Doi:10.1021/ja9041093
(2009)Doi:10.1002/anie.201105515
(2011)Doi:10.1016/j.tet.2011.08.015
(2011)Doi:10.1016/S0040-4039(00)71268-8
(1991)Doi:10.1016/S0008-6215(96)00322-9
(1997)