H. Ishikawa, B. P. Bondzic, Y. Hayashi
FULL PAPER
M. Shibasaki, Org. Lett. 2007, 9, 259–262; o) K. M. Bromfield,
H. Gradén, D. P. Hagberg, T. Olsson, N. Kann, Chem. Com-
mun. 2007, 3183–3185; p) K. Yamatsugu, S. Kamijo, Y. Suto,
M. Kanai, M. Shaibasaki, Tetrahedron Lett. 2007, 48, 1403–
1406; q) U. Zutter, H. Iding, P. Spurr, B. Wirz, J. Org. Chem.
2008, 73, 4895–4902; r) B. M. Trost, T. Zhang, Angew. Chem.
2008, 120, 3819–3821; Angew. Chem. Int. Ed. 2008, 47, 3759–
3761; s) J.-J. Shie, J.-M. Fang, C.-H. Wong, Angew. Chem. 2008,
120, 5872–5875; Angew. Chem. Int. Ed. 2008, 47, 5788–5791; t)
U. Zutter, H. Iding, P. Spurr, B. Wirz, J. Org. Chem. 2008,
73, 4895–4902; u) M. Matveenko, M. G. Banwell, A. C. Willis,
Tetrahedron Lett. 2008, 49, 7018–7020; v) N. T. Kipassa, H.
Okamura, K. Kina, T. Hamada, T. Iwagawa, Org. Lett. 2008,
10, 815–816; w) L.-D. Nie, X.-X. Shi, K. H. Ko, W.-D. Lu, J.
Org. Chem. 2009, 74, 3970–3973; x) T. Mandai, T. Oshitari,
Synlett 2009, 783–786; y) T. Oshitari, T. Mandai, Synlett 2009,
787–789; z) H. Sun, Y.-J. Lin, Y. Wu, Synlett 2009, 2473–2476;
aa) K. Yamatsugu, L. Yin, S. Kamijo, Y. Kimura, M. Kanai,
M. Shibasaki, Angew. Chem. 2009, 121, 1090–1096; Angew.
Chem. Int. Ed. 2009, 48, 1070–1076; ab) B. Sullivan, I. Carrera,
M. Drouin, T. Hudlicky, Angew. Chem. 2009, 121, 4293–4295;
Angew. Chem. Int. Ed. 2009, 48, 4229–4231; ac) M. Karpf, R.
Trussardi, Angew. Chem. 2009, 121, 5871–5873; Angew. Chem.
Int. Ed. 2009, 48, 5760–5762; ad) N. Satoh, T. Akiba, S. Yoko-
shima, T. Fukuyama, Tetrahedron 2009, 65, 3239–3245; ae) L.-
D. Nie, X.-X. Shi, Tetrahedron: Asymmetry 2009, 20, 124–129;
af) K. Yamatsugu, M. Kanai, M. Shibasaki, Tetrahedron 2009,
65, 6017–6024; ag) H. Osato, I. L. Jones, A. Chen, C. L. L.
Chai, Org. Lett. 2010, 12, 60–63; ah) L. Werner, A. Machara,
T. Hudlicky, Adv. Synth. Catal. 2010, 352, 195–200; ai) S. Zhu,
S. Yu, Y. Wang, D. Ma, Angew. Chem. 2010, 122, 4760–4764;
Angew. Chem. Int. Ed. 2010, 49, 4656–4660; aj) A. Kamimura,
T. Nakano, J. Org. Chem. 2010, 75, 3133–3136; ak) J. Weng,
Y.-B. Li, R.-B. Wang, F.-Q. Li, C. Liu, A. S. C. Chan, G. Lu,
J. Org. Chem. 2010, 75, 3125–3128; al) J. Ma, Y. Zhao, S. Ng,
J. Zhang, J. Zeng, A. Than, P. Chen, X.-W. Liu, Chem. Eur. J.
2010, 16, 4533–4540; am) P. Wichienukul, S. Akkarasamiyo, N.
Kongkathip, B. Kongkathip, Tetrahedron Lett. 2010, 51, 3208–
3210; an) J. S. Ko, J. E. Keum, S. Y. Ko, J. Org. Chem. 2010,
75, 7006–7009; ao) S. Raghavan, V. S. Babu, Tetrahedron 2011,
67, 2044–2050; ap) B. M. Trost, T. Zhang, Chem. Eur. J. 2011,
17, 3630–3643; aq) M. Shibasaki, M. Kanai, K. Yamatsugu,
Isr. J. Chem. 2011, 51, 316–328; ar) T. Tanaka, Q. Tan, H.
Kawakubo, M. Hayashi, J. Org. Chem. 2011, 76, 5477–5479.
Review, see: as) M. Shibasaki, M. Kanai, Eur. J. Org. Chem.
2008, 1839–1850; at) J. Magano, Chem. Rev. 2009, 109, 4398–
4438; au) J. Andraos, Org. Process Res. Dev. 2009, 13, 161–185.
der argon. The resulting mixture was stirred at 70 °C for 2 h before
bubbling NH3 gas at 0 °C for 10 min. To the resulting suspension
was added K2CO3 (11.78 g, 0.85 mol) at 23 °C with stirring for 9 h
before filtration. After excess EtOH had been removed under re-
duced pressure, 2 n HCl was added to the residue at 0 °C. The
aqueous layer was washed with EtOAc followed by an adjustment
to pH = 11 with 28% NH4OH in H2O. The aqueous layer was
extracted three times with 10% MeOH/CHCl3. The combined or-
ganic layers were washed with saturated aqueous NaCl, dried with
MgSO4, and concentrated under reduced pressure to afford 1
(2.15 g, 81% from 7) as a pale yellow oil. 1H NMR (400 MHz,
CDCl3): δ = 6.78 (t, J = 2.0 Hz, 1 H), 5.62 (d, J = 7.6 Hz, 1 H),
4.20 (q, J = 7.2 Hz, 2 H), 4.15–4.20 (m, 1 H), 3.52 (q, J = 8.0 Hz,
1 H), 3.34 (quint, J = 5.6 Hz, 1 H), 3.24 (dt, J = 5.2, 10.0 Hz, 1
H), 2.75 (dd, J = 17.6, 5.2 Hz, 1 H), 2.15 (ddt, J = 17.6, 10.0,
2.8 Hz, 1 H), 2.04 (s, 3 H), 1.40–1.60 (m, 4 H), 1.29 (t, J = 7.2 Hz,
3 H), 0.90 (t, J = 7.2 Hz, 3 H), 0.89 (t, J = 7.2 Hz, 3 H) (NH2
signal undetected) ppm. 13C NMR (100 MHz, CDCl3): δ = 170.9,
166.3, 137.5, 129.6, 81.7, 74.8, 60.8, 59.0, 49.2, 33.6, 26.3, 25.8,
23.7, 14.2, 9.5, 9.3 ppm. IR (film): ν
= 3276, 3077, 2965, 2936,
˜
max
2877, 1715, 1655, 1558, 1464, 1374, 1303, 1244, 1195, 1127, 1064,
1031, 944, 861, 778, 736 cm– 1 . HRMS (ESI): calcd. for
C16H28N2O4Na [M + Na]+ 335.1941; found 335.1934. [α]2D3 = –54.9
(c = 0.68, CHCl3).
Supporting Information (see footnote on the first page of this arti-
1
cle): H NMR, 13C NMR, and IR spectra of all compounds.
Acknowledgments
We acknowledge Homare Shinohara of Eisai Co., Ltd. for dis-
cussion about the DSC results.
[1] C. U. Kim, W. Lew, M. A. Williams, H. Liu, L. Zhang, S. Swa-
minathan, N. Bishofberger, M. S. Chen, D. B. Mendel, C. Y.
Tai, W. G. Laver, R. C. Stevens, J. Am. Chem. Soc. 1997, 119,
681–690.
[2] a) J. C. Rohloff, K. M. Kent, M. J. Postich, M. W. Becker,
H. H. Chapman, D. E. Kelly, W. Lew, M. S. Louie, L. R.
McGee, E. J. Prisbe, L. M. Schultze, R. H. Yu, L. J. Zhang, J.
Org. Chem. 1998, 63, 4545–4550; b) M. Federspiel, R. Fischer,
M. Hennig, H.-J. Mair, T. Oberhauser, G. Rimmler, T. Albiez,
J. Bruhin, H. Estermann, C. Gandert, V. Göckel, S. Götzö, U.
Hoffmann, G. Huber, G. Janatsch, S. Lauper, O. Röckel-
Stäbler, R. Trussardi, A. G. Zwahlen, Org. Process Res. Dev.
1999, 3, 266–274; c) M. Karpf, R. Trussardi, J. Org. Chem.
2001, 66, 2044–2051; d) S. Abrecht, M. Karpf, R. Trussardi,
B. Wirz, EP 1127872 A1, 2001; Chem. Abstr. 2001, 135, 195452;
e) U. Zutter, H. Iding, B. Wirz, EP 1146036 A2, 2001; Chem.
Abstr. 2001, 135, 303728; f) P. J. Harrington, J. D. Brown, T.
Foderaro, R. C. Hughes, Org. Process Res. Dev. 2004, 8, 86–
91; g) S. Abrecht, P. Harrington, H. Iding, M. Karpf, R. Trus-
sardi, B. Wirz, U. Zutter, Chimia 2004, 58, 621–629; h) Y.-Y.
Yeung, S. Hong, E. J. Corey, J. Am. Chem. Soc. 2006, 128,
6310–6311; i) Y. Fukuta, T. Mita, N. Fukuda, M. Kanai, M.
Shibasaki, J. Am. Chem. Soc. 2006, 128, 6312–6313; j) X.
Cong, Z.-J. Yao, J. Org. Chem. 2006, 71, 5365–5368; k) S. Ab-
recht, M. C. Federspiel, H. Estermann, R. Fischer, M. Karpf,
H.-J. Mair, T. Oberhauser, G. Rimmler, R. Trussardi, U. Zutter,
Chimia 2007, 61, 93–99; l) N. Satoh, T. Akiba, S. Yokoshima,
T. Fukuyama, Angew. Chem. 2007, 119, 5836–5838; Angew.
Chem. Int. Ed. 2007, 46, 5734–5736; m) J.-J. Shie, J.-M. Fang,
S.-Y. Wang, K.-C. Tsai, Y.-S. E. Cheng, A.-S. Yang, S.-C.
Hsiao, C.-Y. Su, C.-H. Wong, J. Am. Chem. Soc. 2007, 129,
11892–11893; n) T. Mita, N. Fukuda, F. X. Roca, M. Kanai,
[3]
[4]
[5]
H. Ishikawa, T. Suzuki, Y. Hayashi, Angew. Chem. 2009, 121,
1330–1333; Angew. Chem. Int. Ed. 2009, 48, 1304–1307.
H. Ishikawa, T. Suzuki, H. Orita, T. Uchimaru, Y. Hayashi,
Chem. Eur. J. 2010, 16, 12616–12626.
a) T. Curtius, Ber. Dtsch. Chem. Ges. 1890, 23, 3023–3033; b)
T. Curtius, J. Prakt. Chem. 1894, 50, 275–294; c) P. A. S. Smith,
Org. React. 1946, 337; d) J. H. Saunders, R. J. Slocombe, Chem.
Rev. 1948, 43, 203–218; e) T. Shiori, K. Ninomiya, S. Yamada,
J. Am. Chem. Soc. 1972, 94, 6203–6205; f) S. Brase, C. Gil, K.
Knepper, V. Zimmermann, Angew. Chem. 2005, 117, 5320–
5374; Angew. Chem. Int. Ed. 2005, 44, 5188–5240; g) S. Lang,
J. A. Murphy, Chem. Soc. Rev. 2006, 35, 146–156; h) D. S. Mas-
terson, K. Roy, D. A. Rosado, M. Fouche, J. Pept. Sci. 2008,
14, 1151–1162.
Reviews and books, for example: a) Microreactors: New Tech-
nology for Modern Chemistry (Eds: W. Ehrfield, V. Hessel, H.
Lowe), Wiley-VCH, Weinheim, 2000; b) P. D. I. Fletcher, S. J.
Haswell, E. Pombo-Villar, B. H. Warrington, P. Watts, S. Y. F.
Wong, X. Zhang, Tetrahedron 2002, 58, 4735–4757; c) K. Jahn-
isch, V. Hessel, H. Lowe, M. Baerns, Angew. Chem. 2004, 116,
410–451; Angew. Chem. Int. Ed. 2004, 43, 406–447; d) G. N.
Doku, W. Verboom, D. N. Reinhoudt, A. van den Berg, Tetra-
hedron 2005, 61, 2733–2742; e) J.-I. Yoshida, Chem. Commun.
[6]
6030
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 6020–6031