materials; (2) more than two stereogenic centers are
formed in one step; and (3) chiral quaternary carbon center
is installed with high enantioselectivity.
Recently, efforts from our group demonstrated that the
desymmetrization of cyclohexadienone via a chiral phos-
phoric acid-catalyzed oxo-Michael reaction11 and cincho-
nine-derived thiourea-catalyzed aza-Michael reaction12
could be realized to provide a series of highly enantio-
enriched heterocycle-fused cyclohexenone derivatives. We
envisioned that carbocycle-fused cyclohexenones could also
be obtained utilizing such a dearomatization/desymmetriza-
tion process in a highly efficient manner through a Michael
addition reaction of active methylene side chain. As part of
our ongoing program on asymmetric dearomatization reac-
tion,13 we recently found that the bisphenylsulfonyl methylene
group bearing cyclohexadieones could be synthesized easily
via the dearomatization reaction and undergo the asym-
metric Michael reaction smoothly. Herein we report
such a desymmetrization reaction of cyclohexadieones
bearing an active methylene group via a cinchonine-
derived urea-catalyzed asymmetric Michael reaction.
We began our studies by synthesizing the cyclohexadie-
none substrate bearing an active methylene group. The
bisphenylsulfonyl methyl group was chosen given its highly
enhanced acidity of the methylene proton and the facile
removal ability of the phenylsulfonyl group.14 Therefore,
substrate 4awas obtained from phenol 3avia a PhI(OAc)2-
mediated oxidative dearomatization process. We then tested
the intramolecular Michael reaction of 4a with bifunc-
tional (thio)ureas 6 as the catalysts.15,16 With 10 mol %
of (thio)ureas (6aÀh) in CH2Cl2 at room temperature,
Figure 1. Representative compounds containing chiral cyclo-
hexenones.
aromatics.6 On the other hand, desymmetrization reaction
is a very powerful methods for enantioselective synthesis of
chiral molecules.7 The combination of desymmetrization
reaction with the dearomatization process provides a facile
construction of optically active cyclic and polycyclic com-
pounds from readily available starting materials. This
strategy has been demonstrated successfully in asymmetric
desymmetrization of cyclohexadienones providing effi-
cient carbonÀcarbon bond formation methods.8À10 For
instance, Feringa et al. realized the desymmetrization of
cyclohexadienone via intramolecular Heck reaction with
excellent enantioselectivity using TADDOL-derived phos-
phoramidite ligands.8 For cyclohexadieones bearing an
aldehyde side chain, Rovis et al. elegantly developed an
highly enantioselective intramolecular-type Stetter reac-
tion with a nucleophilic carbene catalyst generatedfrom an
aminoindanol-derived triazolium salt.9 Hayashi et al. and
Gaunt et al. respectively utilized diarylprolinol silyl ether
as the catalyst to achieve the intramolecular Michael
reaction of cyclohexadieones bearing aldehyde side chain
providing highly functionalized enantioenriched polycyclic
molecules.10 In general, the strategy combining oxidative
dearomatization of phenol derivatives and subsequent
desymmetrization reaction has the following advantages:
(1) cheap aromatic compounds are used as starting
(11) Gu, Q.; Rong, Z.-Q.; Zheng, C.; You, S.-L. J. Am. Chem. Soc.
2010, 132, 4056.
(12) Gu, Q.; You, S.-L. Chem. Sci. 2011, 2, 1519.
(13) (a) Wu, Q.-F.; He, H.; Liu, W.-B.; You, S.-L. J. Am. Chem. Soc.
2010, 132, 11418. (b) Wu, Q.-F.; Liu, W.-B.; Zhuo, C.-X.; Rong, Z.-Q;
Ye, K.-Y.; You, S.-L. Angew. Chem., Int. Ed. 2011, 50, 4455. For
selected examples from other groups, see: (c) Ichikawa, E.; Suzuki, M.;
Yabu, K.; Albert, M.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004,
126, 11808. (d) Austin, J. F.; Kim, S.-G.; Sinz, C. J.; Xiao, W.-J.;
MacMillan, D. W. C. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5482.
(e) Legault, C. Y.; Charette, A. B. J. Am. Chem. Soc. 2005, 127, 8966.
(f) Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314.
(g) Quideau, S.; Lyvinec, G.; Marguerit, M.; Bathany, K.; Ozanne-
(5) (a) Hikichi, S.; Hareau, G. P-J.; Sato, F. Tetrahedron Lett. 1997,
38, 8299. (b) Hareau-Vittini, G.; Hikichi, S.; Sato, F. Angew. Chem., Int.
Ed. 1998, 37, 2099. (c) Sarakinos, G.; Corey, E. J. Org. Lett. 1999, 1, 811.
(d) Hanazawa, T.; Koiwa, M.; Hareau, G. P-J.; Sato, F. Tetrahedron
Lett. 2000, 41, 2659. (e) Busch-Petersen, J.; Corey, E. J. Tetrahedron
Lett. 2000, 41, 6941. (f) Suzuki, H.; Yamazaki, N.; Kibayashi, C. J. Org.
Chem. 2001, 66, 1494. (g) Lerm, M.; Gais, H.-J.; Cheng, K.; Vermeeren, C.
J. Am. Chem. Soc. 2003, 125, 9653. (h) Anderson, J. D.; Garcıa, P. G.;
Hayes, D.; Henderson, K. W.; Kerr, W. J.; Moir, J. H.; Fondekar, K. P.
Tetrahedron Lett. 2001, 42, 7111. (i) O’Brien, P. J. Chem. Soc., Perkin
Trans. 1 1998, 1439.
ꢀ
ꢀ
Beaudenon, A.; Buffeteau, T.; Cavagnat, D.; Chenede, A. Angew.
Chem., Int. Ed. 2009, 48, 4605. (h) Garcia-Fortanet, J.; Kessler, F.;
Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 6676. (i) Jones, S. B.;
Simmons, B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 13606.
(j) Lian, Y.; Davies, H. M. L. J. Am. Chem. Soc. 2010, 132, 440. (k)
Uyanik, M.; Yasui, T.; Ishihara, K. Tetrahedron 2010, 66, 5841. (l)
Nemoto, T.; Ishige, Y.; Yoshida, M.; Kohno, Y.; Kanematsu, M.;
Hamada, Y. Org. Lett. 2010, 12, 5020. (m) Qi, J.; Beeler, A. B.; Zhang,
Q.; Porco, J. A., Jr. J. Am. Chem. Soc. 2010, 132, 13642. (n) Rousseaux,
S.; Garcıa-Fortanet, J.; Del Aguila Sanchez, M. A.; Buchwald, S. L.
J. Am. Chem. Soc. 2011, 133, 9282.
ꢀ
(6) For reviews, see: (a) Quideau, S.; Pouysegu, L.; Deffieux, D.
ꢀ
Synlett 2008, 467. (b) Pouysegu, L.; Deffieux, D.; Quideau, S. Tetra-
hedron 2010, 66, 2235. (c) Roche, S. P.; Porco, J. A., Jr. Angew. Chem.,
Int. Ed. 2011, 50, 4068. Selected recent examples: (d) Wenderski, T. A.;
ꢀ
Huang, S.; Pettus, T. R. R. J. Org. Chem. 2009, 74, 4104. (e) Pouysegu,
L.; Sylla, T.; Garnier, T.; Rojas, L. B.; Charris, J.; Deffieux, D.;
Quideau, S. Tetrahedron 2010, 66, 5908. (f) Wenderski, T. A.; Hoarau,
C.; Mejorado, L.; Pettus, T. R. R. Tetrahedron 2010, 66, 5873.
(7) For reviews, see: (a) Garcıa-Urdiales, E.; Alfonso, I.; Gotor, V.
Chem. Rev. 2005, 105, 313. (b) Studer, A.; Schleth, F. Synlett 2005, 3033.
(8) (a) Sato, Y.; Sodeoka, M.; Shibasaki, M. J. Org. Chem. 1989, 54,
4738. (b) Imbos, R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc.
2002, 124, 184.
(9) Liu, Q.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 2552.
(10) (a) Hayashi, Y.; Gotoh, H.; Tamura, T.; Yamaguchi, H.; Masui,
R.; Shoji, M. J. Am. Chem. Soc. 2005, 127, 16028. (b) Vo, N. T.; Pace,
R. D. M.; O’Har, F.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 404.
(c) Leon, R.; Jawalekar, A.; Redert, T.; Gaunt, M. J. Chem. Sci. 2011, 2,
1487.
ꢀ
(14) For a review, see: (a) Alba, A.-N. R.; Companyo, X.; Rios, R.
Chem. Soc. Rev. 2010, 39, 2018. For selected examples, see: (b) Alba,
ꢀ
A.-N.; Compano, X.; Moyano, A.; Rios, R. Chem.;Eur. J. 2009, 15,
11095. (c) Landa, A.; Puente, A; Santos, J. I.; Vera, S.; Oiarbide, M.;
ꢀ
Palomo, C. Chem.;Eur. J. 2009, 15, 11954. (d) Ruano, J. L. G.; Marcos,
ꢀ
V.; Aleman, J. Chem. Commun. 2009, 4435.
(15) For reviews, see: (a) Takemoto, Y. Org. Biomol. Chem. 2005, 3,
4299. (b) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45,
1520. (c) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348,
999. (d) Connon, S. J. Chem.;Eur. J. 2006, 12, 5418. (e) Doyle, A. G.;
Jacobsen, E. N. Chem. Rev. 2007, 107, 5713. (f) Connon, S. J. Chem.
Commun. 2008, 2499. (g) Connon, S. J. Synlett 2009, 354. (h) Takemoto,
Y. Chem. Pharm. Bull. 2010, 58, 593.
Org. Lett., Vol. 13, No. 19, 2011
5193