Hu et al.
Report
Mayer, M.; Welther, A.; Wangelin, A. J. v. Iron-Catalyzed Isomeriza-
Isomerization of Normal Butenes. J. Am. Chem. Soc. 1934, 56, 2696-
2698; (b) Linstead, R. P.; Michaelis, K. O. A.; Thomas, S. L. S. Catalytic
Diqwoprtionation and Dehydrogenation of some Terpenes and Ter-
pene Ketones. J. Chem. Soc. 1940, 1139-1147; (c) Hiromi, K.; Shig-
etaka, S.; Gaku, Y.; Tsutomu, M.; Nobuo, N.; Michinori, O.; Reactivities
of Stable Rotamers. VIII. Difference in Reactivities of 1,2,3,4-Tetra-
chloro-9-(2-halo-1,1-dimethylethyl)triptycene Rotamers in Lewis Acid-
catalyzed Reactions. Bull. Chem. Soc. Jpn. 1982, 55, 1514-1521; (d)
Sugimoto, A.; Yamano, J.; Yasueda, M.; Yoneda, S. Preparation and
Chemical Behaviour of exo-Methylene Compounds: lsoelectronic Com-
pounds of 5-Methylenecyclohexa-I ,3-diene. J. Chem. Soc., Perkin
Trans. 1, 1988, 2579-2584; (e) Blatter, K.; Schlüter, A.-D. A Conven-
ient Synthesis of Some (1-Alkylethenyl)arenes and Bis(1-al-
kylethenyl)arenes. Synthesis, 1989, 356-359; (f) Pflästerer, D.; Schu-
macher, S.; Rudolph, M.; Hashmi, A. S. K. Mechanistic Insights into the
Post-Cyclization Isomerization in Gold-Catalyzed 7-exo-dig-Hydroary-
lations. Chem. -Eur. J. 2015, 21, 11585-11589; (g) Boureghda, C.;
Macé, A.; Berrée, F.; Roisnel, T.; Debache, A.; Carboni, B. Ene reactions
of 2-borylated α-methylstyrenes: a practical route to 4-methylene-
chromanes andderivatives. Org. Biomol. Chem. 2019, 17, 5789-5800.
Hu, X.-S.; He, J.-X.; Dong, S.-Z. Zhao, Q.-H.; Yu, J.-S.; Zhou, J. Regiose-
lective Markovnikov hydrodifluoroalkylation of alkenes using difluo-
roenoxysilanes. Nat. Commun. 2020, 11, 5000.
tions of Olefins. ChemCatChem 2011, 3, 1567-1571; (d) Jennerjahn,R.;
Jackstell, R.; Piras, I.; Franke, R.; Jiao, H.; Bauer, M.; Beller, M. Benign
Catalysis with Iron: Unique Selectivity in Catalytic Isomerization Reac-
tions of Olefins. ChemSusChem 2012, 5, 734-739; (e) Xia, T.; Wei, Z.;
Spiegelberg, B.; Jiao, H.; Hinze, S.; de Vries, J. G. Isomerization of Allylic
Alcohols to Ketones Catalyzed by Well-Defined Iron PNP Pincer Cata-
lysts. Chem. -Eur. J. 2018, 24, 4043-4049.
(a) Castro-Rodrigo, R.; Chakraborty, S.; Munjanja, L.; Brennessel, W. W.
Jones, W. D. Synthesis, Characterization, and Reactivities of Molyb-
denum and Tungsten PONOP Pincer Complexes. Organometallics 2016,
35, 3124-3131; (b) Becica, J.; Glaze, O. D.; Wozniak, D. I.; Dobereiner,
G. E. Selective Isomerization of Terminal Alkenes to (Z)‑2-Alkenes Cat-
alyzed by an Air-Stable Molybdenum(0) Complex. Organometallics
2018, 37, 482-490.
(a) Bhatt, U.; Christmann, M.; Quitschalle, M.; Claus, E.; Kalesse, M.
The First Total Synthesis of (+)-Ratjadone. J. Org. Chem. 2001, 66, 1885
-1893; (b) Williams, D. R.; Ihle, D. C.; Plummer, S. V. Total Synthesis
of (-)-Ratjadone. Org. Lett. 2001, 3, 1383-1386; (c) Itami, K.; Yoshida,
J. Multisubstituted Olefins: Platform Synthesis and Applications to Ma-
terials Science and Pharmaceutical Chemistry. Bull. Chem. Soc. Jpn.
2006, 79, 811-824.
(a) Larock, R. C. Comprehensive Organic Transformations: A Guide to
Functional Group Preparations. ed. 2, VCH, 1999; (b) Ma, S.-M.; Zhang,
J.-L. In Comprehensive Organic Synthesis. Knochel, P.; Molander, G. A.
Eds. Vol. 4, Elsevier, Amsterdam, 2014; (c) Deiters, A.; Martin, S. F. Syn-
thesis of Oxygen- and Nitrogen-Containing Heterocycles by Ring-Clos-
ing Metathesis. Chem. Rev. 2004, 104, 2199-2238; (d) McDonald, R.
I.; Liu, G.; Stahl, S. S. Palladium(II)-Catalyzed Alkene Functionalization
via Nucleopalladation: Stereo-chemical Pathways and Enantioselec-
tive Catalytic Applications. Chem. Rev. 2011, 111, 2981-3019; (e) Zhu,
Y.; Wang, Q.; Cornwall, R. G.; Shi, Y. Organo-catalytic Asymmetric Epox-
idation and Aziridination of Olefins and Their Synthetic Applications.
Chem. Rev. 2014, 114, 8199-8256.
(a) Lim, H. J.; Smith, C. R.; RajanBabu, T. V. Facile Pd(II)- and Ni(II)-Cat-
alyzed Isomerization of Terminal Alkenes into 2-Alkenes. J. Org. Chem.
2009, 74, 4565-4572; (b) Zhao, J.; Cheng, B.; Chen, C.; Lu, Z. Cobalt-
Catalyzed Migrational Isomerization of Styrenes. Org. Lett. 2020, 22,
837-841; (c) Zhang, S.; Bedi, D.; Cheng, L.; Unruh, D. K.; Li, G.;
Findlater, M. Cobalt(II)-Catalyzed Stereoselective Olefin Isomerization:
Facile Access to Acyclic Trisubstituted Alkenes. J. Am. Chem. Soc. 2020,
142, 8910-8917; (d) Liu, H.; Cai, C.; Ding, Y.; Chen, J.; Liu, B.; Xia, Y.
Cobalt-Catalyzed E-Selective Isomerization of Alkenes with a Phos-
phine-Amido-Oxazoline Ligand. ACS Omega 2020, 5, 11655-11670; (e)
Yu, X.; Zhao, H.; Li, P.; Koh, M. J. Iron-Catalyzed Tunable and Site-Se-
lective Olefin Transposition. J. Am. Chem. Soc. 2020, 142, 18223-
18230; (f) Xu, S.; Liu, G.; Huang, Z. Iron Catalyzed Isomerization of α-
Alkyl Styrenes to Access Trisubstituted Alkenes. Chin. J. Chem. 2021,
39, 585-589.
(a) Wabnitz, T. C.; Yu, J.-Q.; Spencer, J. B. Evidence That Protons Can
Be the Active Catalysts in Lewis Acid Mediated Hetero-Michael Addi-
tion Reactions. Chem. - Eur. J. 2004, 10, 484-493; (b) Rosenfeld, D. C.;
Shekhar, S.; Takemiya, A.; Utsunomiya, M.; Hartwig J. F. Hydroamina-
tion and Hydroalkoxylation Catalyzed by Triflic Acid. Parallels to Reac-
tions Initiated with Metal Triflates. Org. Lett. 2006, 8, 4179-4182; (c)
Šolić, I.; Lin, H. Bates, R. W. Testing the veracity of claims of Lewis acid
catalysis. Tetrahedron Lett. 2018, 59, 4434-4436; (d) Sletten, E. T.; Tu,
Y.-J.; Schlegel, H. B.; Nguyen, H. M. Are Brønsted Acids the True Pro-
moter of Metal-Triflate-Catalyzed Glycosylations?
A Mechanistic
Probe into 1,2-cis-Aminoglycoside Formation by Nickel Triflate. ACS
Catal. 2019, 9, 2110-2123.
The difference in the reactivity and selectivity is possibly attributed to
the different effective proton concentrations, because different metal
triflates and perchlorate hydrates hydrolyze in a different rate in the
reaction condition. In addition, the hydrolysis of the metal salts would
produce some metal hydroxides or other metal ion species that might
influence the reaction. However, the exact reason for the origin of ste-
reoselectivity is unclear currently.
(a) Bergeron, M.; Johnson, T.; Paquin, J.-F. The Use of Fluoride as a
Leaving Group: SN2’ Displacement of a C—F Bond on 3,3-Difluoropro-
penes with Organolithium Reagents to Give Direct Access to Mono-
fluoroalkenes. Angew. Chem. Int. Ed. 2011, 50, 11112-11116; For a
review, see: (b) Liao, F.; Yu, J.; Zhou, J. Recent Advances in the Highly
Stereoselective Synthesis of Tri- or Tetrasubstituted Monofluoroal-
kenes. Chin. J. Org. Chem. 2017, 37, 2175-2186.
Li, G.; Kuo, J. L.; Han, A.; Abuyuan, J. M.; Young, L. C.; Norton, J. R.;
Palmer, J. H. Radical Isomerization and Cycloisomerization Initiated by
H• Transfer. J. Am. Chem. Soc. 2016, 138, 7698-7704.
Metal triflate has been found to be a hidden Brønsted acid catalyst in
the alkene hydrofunctionalization: (a) Weïwer, M.; Coulombel, L.;
Dunãch, E. Regioselective indium(III) trifluoromethanesulfonate-cata-
lyzed hydrothiolation of non-activated olefins. Chem. Commun. 2006,
332-334; (b) Dang, T. T.; Boeck, F.; Hintermann, L. Hidden Brønsted
Acid Catalysis: Pathways of Accidental or Deliberate Generation of Tri-
flic Acid from Metal Triflates. J. Org. Chem. 2011, 76, 9353-9361; (c)
Chen, J.; Goforth, S. K.; McKeown, B. A.; Gunnoe, T. B. Brønsted acid-
catalysed intramolecular hydroamination of unactivated alkenes:
metal triflates as an in situ source of triflic acid. Dalton Trans. 2017, 46,
2884-2891. Also see ref. 19.
Other Brønsted acids with different pKa value were also investigated,
and found that the use of 5 mol% of H2SO4 or HClO4 (70%, aq.) in the
model reaction only provided the product 2a in 10% NMR yield with
7.1/1 E/Z ratio, and 13% NMR yield with 7.1/1 E/Z ratio, respectively.
However, only alkene dimerization detected by GC-MS analysis in the
case of Tf2NH (5 mol%), and no reaction occurred in the presence of
CF3CO2H or conc. HCl (5 mol%). These data further reveals that the
(a) Larsen, C. R.; Grotjahn, D. B. Stereoselective Alkene Isomerization
over One Position. J. Am. Chem. Soc. 2012, 134, 10357-10360; (b)
Huang, R.-Z.; Lau, K. K.; Li, Z.; Liu, T.-L.; Zhao, Y. Rhodium-Catalyzed
Enantioconvergent Isomerization of Homoallylic and Bishomoallylic
Secondary Alcohols. J. Am. Chem. Soc. 2018, 140, 14647-14654; (c)
Kapat, A.; Sperger, T.; Guven, S.; Schoenebeck, F. E-Olefins through In-
tramolecular Radical Relocation. Science 2019, 363, 391-396.
(a) Olah, G. A.; Prakash, G. K. S. Carbo-cation Chemistry, Wiley:ꢀHobo-
ken, NJ. 2004; (b) Olah, G. A.; Prakash, G. K. S.; Sommer, J.; Molnar, A.
Superacid Chemistry, ed. 2, Wiley: Hoboken, NJ, 2009; (c) Olah, G. A.
100 Years of Car-bocations and Their Significance in Chemistry. J. Org.
Chem. 2011, 66, 5943-5957; (d) Naredla, R. R.; Klumpp, D. A. Con-
temporary Carbocation Chemistry: Applications in Organic Synthesis.
Chem. Rev. 2013, 113, 6905-6948.
The related early reports, see: (a) Ipatieff, V. N.; Pines, H.; Schaad, R. E.
© 2021 SIOC, CAS, Shanghai, & WILEY-VCH GmbH
Chin. J. Chem. 2021, 39, XXX-XXX