10.1002/adsc.202000171
Advanced Synthesis & Catalysis
protocol is operationally simple and broadly
applicable to a range of α-amino ketone and
isothiocyanate substrates.
Scullino, M. R. Pitman, A. Sexton, V. Oliver, L.
Davies, R. J. Rebello, L. Furic, D. J. Creek, S. M.
Pitson, B. L. Flynn, J. Med. Chem. 2016, 59, 965-
984; e) X. X. Chai, Z. P. Cai, M. T. Yang, Y. Zhou, Y.
J. Fu, Y. Z. Xiong, Arch. Pharm. 2016, 349, 523-531;
f) M. Murar, J. Dobias, P. Sramel, G. Addova, G.
Hanquet, A. Bohac, Eur. J. Med. Chem. 2017, 126,
754-761.
Experimental Section
General Procedure for the Synthesis of the Products 4.
To a mixture of 2-aminoacetophenone hydrochloride (1,
0.6 mmol) and the corresponding isothiocyanate (2, 0.5
mmol) in MeCN (5 mL) was added K2CO3 (152 mg, 1.1
mmol). After stirred at 0 °C for 1 h, the reaction was
allowed to warm up to room temperature (25 °C) until
TLC indicated the complete consumption of 2. Then the
reaction mixture was treated with K2CO3 (104 mg, 0.75
mmol) and iodine (152 mg, 0.6 mmol) in sequence, and
maintained at 60 °C until TLC indicated the disappearance
of the addition intermediate. Upon the completion of the
reaction, it was quenched with 5% Na2S2O3 (5 mL), diluted
with brine (10 mL) and then extracted with EtOAc (15 mL
× 3). The combined organic layer was dried over
anhydrous Na2SO4, concentrated, and then purified
through silica gel column chromatography to afford the
oxazol-2-amine product 4.
[3] S.-H. Kim, B. Markovitz, R. Trovato, B. R. Murphy,
H. Austin, A. J. Willardsen, V. Baichwal, S. Morham,
A. Bajji, Bioorg. Med. Chem. Lett. 2013, 23, 2888-
2892.
[4] R. J. Perner, J. R. Koenig, S. Didomenico, A.
Gomtsyan, R. G. Schmidt, C. H. Lee, M. C. Hsu, H.
A. McDonald, D. M. Gauvin, S. Joshi, T. M. Turner,
R. M. Reilly, P. R. Kym, M. E. Kort, Bioorg. Med.
Chem. 2010, 18, 4821-4829.
[5] D. Sriram, P. Yogeeswari, R. Thirumurugan, R. K.
Pavana, J. Med. Chem. 2006, 49, 3448-3450.
[6] a) A. M. van Leusen, H. J. Jeuring, J. Wildeman, P. J.
M. S. van Nispen, J. Org. Chem. 1981, 46, 2069-
2072; b) P. Frøyen, Phosphorus Sulfur 1991, 60, 81-
84; c) P. Molina, P. M. Fresneda, P. Almendros,
Synthesis 1993, 54-56; d) K. Fukushima, T. Ibata,
Heterocycles 1995, 40, 149-154.
Acknowledgements
We thank the National Natural Science Foundation of China (Nos.
81773570 and U1804283), the Young Backbone Teachers Fund
of Zhengzhou University (No. 2017ZDGGJS020), and the College
Students’ Innovation and Entrepreneurship Training Program of
Zhengzhou University (No. 2019cxcy490) for financial support.
[7] a) T. G. M. Dhar, J. Guo, Z. Shen, W. J. Pitts, H. H.
Gu, B.-C. Chen, R. Zhao, M. S. Bednarz, E. J.
Iwanowicz, Org. Lett. 2002, 4, 2091-2093; b) R.
Zhao, B.-C. Chen, M. S. Bednarz, B. Wang, A. P.
Skoumbourdis, J. E. Sundeen, T. G. M. Dhar, E. J.
Iwanowicz, B. Balasubramanian, J. C. Barrish,
ARKIVOC 2007, 2007, 36-42.
References
[1] a) T. G. M. Dhar, Z. Shen, J. Guo, C. Liu, S. H.
Watterson, H. H. Gu, W. J. Pitts, C. A. Fleener, K.
Rouleau, N. Z. Sherbina, K. W. Mcintyre, M. Witmer,
J. A. Tredup, B. C. Chen, R. Zhao, M. S. Bednarz, D.
L. Cheney, J. F. MacMaster, L. F. Miller, K. K. Berry,
T. W. Harper, J. C. Barrish, D. L. Hollenbaugh, E. J.
Iwanowicz, J. Med. Chem. 2002, 45, 2127-2130; b) T.
G. M. Dhar, Z. Shen, C. A. Fleener, K. A. Rouleau, J.
C. Barrish, D. L. Hollenbaugh, E. J. Iwanowicz,
Bioorg. Med. Chem. Lett. 2002, 12, 3305-3308; c) T.
G. M. Dhar, Z. Shen, H. H. Gu, P. Chen, D. Norris, S.
H. Watterson, S. K. Ballentine, C. A. Fleener, K. A.
Rouleau, J. C. Barrish, R. Townsend, D. L.
Hollenbaugh, E. J. Iwanowicz, Bioorg. Med. Chem.
Lett. 2003, 13, 3557-3560; d) P. Chen, D. Norris, K.
D. Haslow, T. G. M. Dhar, W. J. Pitts, S. H.
Watterson, D. L. Cheney, D. A. Bassolino, C. A.
Fleener, K. A. Rouleau, D. L. Hollenbaugh, R. M.
Townsend, J. C. Barrisha, E. J. Iwanowicza, Bioorg.
Med. Chem. Lett. 2003, 13, 1345-1348.
[8] V. A. Rassadin, V. P. Boyarskiy, V. Y. Kukushkin,
Org. Lett. 2015, 17, 3502-3505.
[9] T. Soeta, A. Matsumoto, Y. Sakata, Y. Ukaji, J. Org.
Chem. 2017, 82, 4930-4935.
[10] A. Y. Dubovtsev, D. V. Dar'in, V. Y. Kukushkin, Adv.
Synth. Catal. 2019, 361, 2926-2935.
[11] a) M. Chen, N. Sun, H. Chen, Y. Liu, Chem.
Commun. 2016, 52, 6324-6327; b) A. D. Gillie, R.
Jannapu Reddy, P. W. Davies, Adv. Synth. Catal.
2016, 358, 226-239; c) X.-L. Han, C.-J. Zhou, X.-G.
Liu, S.-S. Zhang, H. Wang, Q. Li, Org. Lett. 2017, 19,
6108-6111; d) L. Liao, H. Zhang, X. Zhao, ACS
Catal. 2018, 8, 6745-6750; e) X. Tian, L. Song, C.
Han, C. Zhang, Y. Wu, M. Rudolph, F. Rominger, A.
S. K. Hashmi, Org. Lett. 2019, 21, 2937-2940.
[12] a) H. Comas, G. Bernardinelli, D. Swinnen, J. Org.
Chem. 2009, 74, 5553-5558; b) S. Guin, S. K. Rout,
A. Gogoi, S. Nandi, K. K. Ghara, B. K. Patela, Adv.
Synth. Catal. 2012, 354, 2757-2770; c) K.
Pandurangan, A. B. Aletti, D. Montroni, J. A. Kitchen,
M. Martinez-Calvo, S. Blasco, T. Gunnlaugsson, E.
M. Scanlan, Org. Lett. 2017, 19, 1068-1071; d) S.
Jiao, Z. Wang, Q. Zhao, W. Yu, J. Chang,
Tetrahedron 2018, 74 3069-3073; e) N. Jatangi, N.
[2] a) P. A. Harris, M. Cheung, R. N. Hunter, M. L.
Brown, J. M. Veal, R. T. Nolte, L. Wang, W. Liu, R.
M. Crosby, J. H. Johnson, A. H. Epperly, R. Kumar,
D. K. Luttrell, J. A. Stafford, J. Med. Chem. 2005, 48,
1610-1619; b) M. G. Bursavich, D. P. Parker, J. A.
Willardsen, Z. H. Gao, T. Davis, K. Ostanin, R.
Robinson, A. Peterson, D. M. Cimbora, J. F. Zhu, B.
Richards, Bioorg. Med. Chem. Lett. 2010, 20, 1677-
1679; c) J. H. Suh, E. K. Yum, Y. S. Cho, Chem.
Pharm. Bull. 2015, 63, 573-578; d) L. Aurelio, C. V.
4
This article is protected by copyright. All rights reserved.