C O M M U N I C A T I O N S
Table 2. Enantioselective Synthesis of Allylic Trichloroacetamides
2 from (E)-Allylic Trichloroacetimidates 1 Containing Lewis Basic
Functionalitya
alcohols are readily available, their trichloroacetimidate derivatives
are prepared in high yield from commercially available trichloro-
acetonitrile, oxidative removal of an N-aryl protecting group from
the allylic amide product is not required, and the trichloroacetamide
group can be easily cleaved or transformed to other functional
arrays,17 this catalytic asymmetric method for preparing chiral allylic
amines and congeners should find considerable use in enantio-
selective synthesis.
c
entry
cpds
R
temp (°C)
yield (%)b
%ee /conf
1
2
3
4
5
6
7
8
9
j
j
k
l
m
m
n
o
p
p
q
(CH2)3OAc
(CH2)3OAc
rt
38 °C
rt
rt
rt
38 °C
38 °C
rt
rt
38 °C
rt
74
97
73
85
80
98
98
84
87
96
82
92/S
92/S
95/S
95/S
94d/S
95d/S
96/R
80/R
95/S
95/S
97/S
(CH2)2CO2Me
(CH2)3(OCH2CH2O)
(CH2)2COMe
(CH2)2COMe
CH2OTBDMS
CH2OH
(CH2)3NBn(Boc)
(CH2)3NBn(Boc)
(CH2)9NBn2
Acknowledgment. We thank the NSF (CHE-9726471) for
financial support, Drs. C. J. Richards and T. Remarchuk for useful
discussions, and Dr. J. Ziller for X-ray analysis of 2e. C.E.A. thanks
Amgen for a predoctoral fellowship. NMR and mass spectra were
determined at UCI with instruments purchased with the assistance
of NSF and NIH shared instrumentation grants.
Note Added after ASAP. In the version published on the Web
9/19/2003, the structure for 2n, 2k, 2f, and 8 in eqs 2-4 were
incorrect. The version published 9/22/2003 and the print version
are correct.
10
11
a Conditions: 5 mol % 5, CH2Cl2 (0.6 M), 18 h. b Duplicate experiments
((3%). c Determined by HPLC analysis of duplicate experiments ((2%).
d Determined by chiral GC analysis of duplicate experiments ((2%).
at least at 38 °C, by tertiary amine functionality at C6, secondary
amine functionality at either C6 or C12, or a thioether substituent
at C6 of the (E)-2-alkenyl trichloroacetimidate starting material.
As only (E)-allylic trichloroacetimidates are viable substrates in
the COP-Cl-catalyzed allylic rearrangement, ent-COP-Cl (ent-
5) was prepared to access the opposite enantiomer of allylic
trichloroacetamide products.10 Thus, rearrangement of crotyl tri-
chloroacetimidate 1e and 4-(tert-butyldimethylsiloxy)-2-butenyl-
trichloroacetimidate (1n) with ent-5 using conditions reported for
these substrates in Tables 1 and 2, respectively, provided (R)-2e
and (R)-2n in 92% ee (83% yield) and 96% ee (98% yield).
To illustrate the potential utility of enantioenriched allylic
trichloroacetamide products, and establish the absolute configura-
tions of 2n and 2k, the following transformations were carried out.
Cleavage of the silyl protecting group of 2n followed by tosylation
provided (R)-N-tosyl-4-vinyloxazolidinone 6 of high enantiopurity
(eq 2).11 The GABA aminotransaminase inhibitor (S)-vigabatrin
(7)12 was readily prepared from 2k by acidic cleavage of the
trichloroacetyl and ester groups.13 To illustrate the use of allylic
trichloroacetamide products for enantioselective synthesis of un-
natural R-amino acids, the double bond of 2f was cleaved with
ozone in basic methanol14 to deliver the differentially protected (S)-
R-amino ester 8 with no detectable loss of enantiomeric purity.15,16
Supporting Information Available: Representative experimental
procedures for trichloroacetimidate preparation and catalytic rearrange-
ment, copies of HPLC and GC traces used to determine enantiopurity,
and copies of 1H and 13C NMR spectra for all new compounds (PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Overman, L. E. J. Am. Chem. Soc. 1974, 96, 597-599. (b) Overman,
L. E. J. Am. Chem. Soc. 1976, 98, 2901-2910.
(2) More than 170 publications report use of this rearrangement to prepare
allylic amines and analogues: Carpenter, N. E.; Overman, L. E.,
comprehensive review in preparation.
(3) (a) Overman, L. E. Acc. Chem. Res. 1980, 13, 218-224. (b) Overman,
L. E. Angew. Chem., Int. Ed. Engl. 1984, 23, 579-586. (c) Metz, P.;
Mues, C.; Schoop, A. Tetrahedron 1992, 48, 1071-1080. (d) Schenck,
T. G.; Bosnich, B. J. Am. Chem. Soc. 1985, 107, 2058-2066.
(4) (a) Calter, M.; Hollis, T. K.; Overman, L. E.; Ziller, J.; Zipp, G. G. J.
Org. Chem. 1997, 62, 1449-1456. (b) Hollis, T. K.; Overman, L. E.
Tetrahedron Lett. 1997, 38, 8837-8840. (c) Jiang, Y.; Longmire, J. M.;
Zhang, X. Tetrahedron Lett. 1999, 40, 1449-1450. (d) Donde, Y.;
Overman, L. E. J. Am. Chem. Soc. 1999, 121, 2933-2934. (e) Hollis, T.
K.; Overman, L. E. J. Organomet. Chem. 1999, 576, 290-299.
(5) Coordination of the palladium center to the π bond, not nitrogen, is
required in a cyclization-induced rearrangement.2,3b,d
(6) (a) Uozumi, Y.; Kato, K.; Hayashi, T. Tetrahedron: Asymmetry 1998, 9,
1065-1072. (b) Cohen, F.; Overman, L. E. Tetrahedron: Asymmetry
1998, 9, 3213-3222. (c) Leung, P.-H.; Ng, K.-H.; Li, Y.; White, A. J.
P.; Williams, D. J. Chem. Commun. 1999, 2435-2436. (d) Kang, J.; Yew,
K. H.; Kim, T. H.; Choi, D. H. Tetrahedron Lett. 2002, 43, 9509-9512.
(e) Kang, J.; Kim, T. H.; Yew, K. H.; Lee, W. K. Tetrahedron: Asymmetry
2003, 14, 415-418. (f) Overman, L. E.; Owen, C. E.; Pavan, M. M.;
Richards, C. J. Org. Lett. 2003, 5, 1809-1812.
(7) Di-µ-chlorobis[(η5-(S)-(pR)-2-(2′-(4′-isopropyl)oxazolinylcyclopentadi-
enyl, 1-C, 3′-N))-(η4-tetraphenylcyclobutadiene)cobalt]dipalladium: Stevens,
A. M.; Richards, C. J. Organometallics 1999, 18, 1346-1348.
(8) Numata, M.; Sugimoto, M.; Koike, K.; Ogawa, T. Carbohydr. Res. 1987,
163, 209-225.
(9) Formation of cinnamyl trichloroacetamide presumably occurs by a
competing ionization-recombination pathway.4e
(10) Using (R)-valinol, ent-5 was prepared in a manner analogous to that of
5.7
(11) A rotation of [R]27D -29.0 (1.0, CHCl3) is reported for a 90% ee sample
of the S enantiomer of established absolute configuration, see: Overman,
L. E.; Remarchuk, T. J. Am. Chem. Soc. 2002, 124, 12-13.
(12) A rotation of [R]27D +12.3 (0.2, H2O, pH 6.6) is reported for enantiopure
7, see: Kwon, T. W.; Keusenkothen, P. F.; Smith, M. B. J. Org. Chem.
1992, 57, 6169-6173 and ref 20 therein.
(13) Casara, P. Tetrahedron Lett. 1994, 35, 3049-3050.
(14) Marshall, J. A.; Garofalo, A. W.; Sedrani, R. C. Synlett 1992, 643-645.
(15) The absolute configuration of 2e was determined by X-ray analysis.16
Removal of the TBDMS group from (S)-2n provided (S)-2o in high yield.
Absolute configurations of other allylic trichloroacetamides prepared
during this investigation were assigned by analogy to 2e, 2o, 2k, and 2n.
(16) Flack, H. D. Acta Crystallogr. 1983, A39, 876-881.
In conclusion, COP-Cl (5) catalyzes the rearrangement of (E)-
allylic trichloroacetimidates to provide transposed allylic trichloro-
acetamides in high yield and 92-98% ee, thus providing the first
truly practical method for transforming prochiral allylic alcohols
to enantioenriched allylic amines and their analogues. As (E)-allylic
(17) (a) Nagashima, H.; Wakamatsu, H.; Itoh, K. J. Chem. Soc., Chem.
Commun. 1983, 1489-1490. (b) Atanassova, I. A.; Petrov, J. S.; Mollov,
N. M. Synthesis 1987, 734-736. (c) Yamamoto, N.; Isobe, M. Chem.
Lett. 1994, 2299-2302.
JA037086R
9
J. AM. CHEM. SOC. VOL. 125, NO. 41, 2003 12413