1228
K. C. Majumdar et al.
LETTER
The NOESY spectrum of the compound 9c shows two im-
portant NOE interactions, one between Ha (δH = 7.05, d,
J = 2.8 Hz) and Hd (δH = 6.70, s) and the other between Hd
(δH = 6.70, s) and He (δH = 7.19, d, J = 16.0 Hz). Moreover,
the spectral data and melting point of the compound 9j
were also consistent with the literature reported values.4
Acknowledgment
We thank CSIR (New Delhi) and DST (New Delhi) for financial as-
sistance. Two of us are grateful to UGC (New Delhi, I.A.) and to
CSIR (New Delhi, P.K.S.) for their research fellowships. We also
thank DST (New Delhi) for providing Bruker DPX-400 NMR and
Perkin-Elmer L 120-000A IR spectrometers and a Perkin-Elmer
2400 series II CHN-analyzer under the DST-FIST programme.
A probable reaction mechanism for the formation of 2H-
chromene 9 is depicted in Scheme 3. Initially the CuI may
facilitate a 1,5-propargyl shift of 7 via the intermediate 11
to form the intermediate 12 which may readily undergo an
intramolecular [4+2] cycloaddition28 to generate the fused
species 13. The strained species 13 may then isomerize to
produce 14 that on facile electrocyclic ring opening29 may
give the product 9.
Supporting Information for this article is available online at
References and Notes
(1) (a) Hepworth, J. D. Pyrans and Fused Pyrans: Synthesis and
Applications, In Comprehensive Heterocyclic Chemistry,
Vol. 3; Katrizky, A. R.; Rees, C. W., Eds.; Pergamon:
Oxford, 1984, 737. (b) Milcent, R.; Chau, F. Chimie
Organique Hétérocyclique; EDP Sciences: Les Ulis, 2003,
434.
(2) Menut, C.; Bessiere, J. M.; Ntalani, H.; Verin, P.; Henriques,
A. T.; Limberger, R. Phytochemistry 2000, 53, 975.
(3) McKee, T. C.; Fuller, R. W.; Covington, C. D.; Cardellina,
J. H.; Gulakowski, R. J.; Krepps, B. L.; McMahon, J. B.;
Boyd, M. R. J. Nat. Prod. 1996, 59, 754.
(4) Nazarian, Z.; Emami, S.; Heydari, S.; Ardestani, S. K.;
Nakhjiri, M.; Poorrajab, F.; Shafiee, A.; Foroumadi, A. Eur.
J. Med. Chem. 2010, 45, 1424.
(5) Elomri, A.; Mitaku, S.; Michel, S.; Skaltsounis, A.-L.;
Tillequin, F.; Koch, M.; Pierre, A.; Guilbaud, N.; Leonce, S.;
Kraus-Berthier, L.; Rolland, Y.; Atassi, G. J. Med. Chem.
1996, 39, 4762.
(6) (a) Kidwai, M.; Saxena, S.; Khan, M. K. R.; Thukral, S. S.
Bioorg. Med. Chem. Lett. 2005, 15, 4295. (b) Tahtaoui, C.;
Demailly, A.; Guidemann, C.; Joyeux, C.; Schneider, P.
J. Org. Chem. 2010, 75, 3781.
(7) Lago, J. H. G.; Ramos, C. S.; Casanova, D. C. C.; Morandim,
A. de A.; Bergamo, D. C. B.; Cavalheiro, A. J.; Bolzani, V.
da S.; Furlan, M.; Guimarães, E. F.; Young, M. C. M.; Kato,
M. J. J. Nat. Prod. 2004, 67, 1783.
CuI
R1
O
R1
O
R2
R3
R2
R3
1,5-propargyl
shift
R5
R5
CuI
O
O
R4
R1
R4
7
11
O
O
R5
R5
R1
R2
R3
H
intramolecular
[4+2]
cycloaddition
R2
R3
isomerization
O
O
R4
R4
13
CuI
CuI
12
O
R5
R1
O
electro-
cyclic ring
opening
R1
R2
R3
R5
R2
R3
O
O
R4
R4
14
9
(8) Bernard, C. B.; Krishnamurty, H. G.; Chauret, D.; Durst, T.;
Philogene, B. J. R.; Sanchez Vindas, P.; Hasbun, C.; Poveda,
L.; San Roman, L.; Arnason, J. T. J. Chem. Ecol. 1995, 21,
801.
Scheme 3 Probable reaction mechanism for the formation of 2H-
chromenes
(9) Mukai, K.; Okabe, K.; Hosose, H. J. Org. Chem. 1989, 54,
557.
(10) (a) Paramonov, S.; Delbaere, S.; Fedorova, O.; Fedorov, Y.;
Lokshin, V.; Samat, A.; Vermeersch, G. J. Photochem.
Photobiol. A 2010, 209, 111. (b) Evans, R. A.; Such, G. K.
Aust. J. Chem. 2005, 58, 825.
(11) Hanamoto, T.; Shindo, K.; Matsuoka, M.; Kiguchi, Y.;
Kondo, M. J. Chem. Soc., Perkin Trans. 1 2000, 103.
(12) Varma, R. S.; Dahiya, R. J. Org. Chem. 1998, 63, 8038.
(13) (a) Wang, Q.; Finn, M. G. Org. Lett. 2000, 2, 4063.
(b) Kabalka, G. W.; Venkataiah, B.; Das, B. C. Synlett 2004,
2194. (c) Petasis, N. A.; Butkevich, A. N. J. Organomet.
Chem. 2009, 694, 1747.
(14) (a) Chang, S.; Grubbs, R. H. J. Org. Chem. 1998, 63, 864.
(b) Wipf, P.; Weiner, W. S. J. Org. Chem. 1999, 64, 5321.
(c) van Otterlo, W. A. L.; Ngidi, E. L.; Kuzvidza, S.;
Morgans, G. L.; Moleele, S. S.; de Koning, C. B.
Tetrahedron 2005, 61, 9996.
In short, the product of the reaction can be regarded as the
enyne metathesis product of alkyl/aryl-(E)-(o-propargyl-
oxy)styryl ketone catalyzed by CuI.
In conclusion, a series of potentially bioactive 2H-
chromenes have been synthesized in good yields via CuI-
catalyzed reactions of easily available alkyl/aryl-(E)-(o-
propargyloxy)styryl ketones of which the compound 9j is
known to exhibit in vitro antileishmanial activity at non-
cytotoxic concentration.4 The attractive features of this
methodology are the mild reaction conditions, high atom-
economy, use of inexpensive starting materials, and eco-
friendly catalyst. Moreover, this protocol can introduce
α,β-unsaturated carbonyl functionality in the 2H-
chromene unit. Thus, the reaction described adds a more
general and efficient approach to the functionalized 2H-
chromenes.
(15) Kaye, P. T.; Nocanda, X. W. J. Chem. Soc., Perkin Trans. 1
2000, 1331.
(16) Hlubeck, J.; Ritchie, E.; Taylor, W. C. Tetrahedron Lett.
1969, 10, 1369.
Synlett 2012, 23, 1225–1229
© Georg Thieme Verlag Stuttgart · New York