Journal of the American Chemical Society
Article
Kakiuchi, K. Tetrahedron Lett. 2004, 45, 9163. (f) Kwong, F. Y.; Lee,
H. W.; Law, W. H.; Qiu, L. Q.; Chan, A. S. C. Tetrahedron: Asymmetry
2006, 17, 1238. (g) Lledo, A.; Sola, J.; Verdaguer, X.; Riera, A.;
Maestro, M. A. Adv. Synth. Catal. 2007, 349, 2121. (h) Kim, D. E.;
(b) [(3 + 2)]: ref 7b. (c) [(5 + 2)]: Yu, Z.-X.; Wender, P. A.; Houk, K.
N. J. Am. Chem. Soc. 2004, 126, 9154. (d) [4 + (2 + 2)]: Baik, M.-H.;
Baum, E. W.; Burland, M. C.; Evans, P. A. J. Am. Chem. Soc. 2005, 127,
1602. (e) [2 + 2 + 2 + 1]: Montero-Campillo, M. M.; Rodríguez-Otero,
J.; Cabaleiro-Lago, E. J. J. Phys. Chem. A 2008, 112, 2423. (f) [(5+2)+1]:
ref 9d. (g) Formal [5 + 1]/[2 + 2 + 1]: ref 9g.
(12) The labeling of R and S here in the intermediates and transition
states is not based on the traditional nomenclature of chirality for
chiral compounds but is used to specify that the (R)-intermediates and
(R)-transition states are connected to the (R)-product, while the (S)-
intermediates and (S)-transition states are connected to the (S)-
product.
(13) The M06//B3LYP predicted ee values of substrates with
different R substituents in solution are given below. The electronic
effect introduced by the R group in the substrate can influence the
reaction rate, but not the enantioselectivity, since both (R)- and (S)-
transition states have almost the same electronic effects. Therefore,
origin of enantioselectivity is still due to steric effect of the R group
(Figure 4).
̂
Kim, I. S.; Ratovelomanana-Vidal, V.; Genet, J.-P.; Jeong, N. J. Org.
Chem. 2008, 73, 7985. (i) Turlington, M.; Yue, Y.; Yu, X.-Q.; Pu, L.
J. Org. Chem. 2010, 75, 6941. For selected reviews on Pauson−Khand
reaction, see: (j) Chung, Y. K. Coord. Chem. Rev. 1999, 188, 297.
(k) Brummond, K. M.; Kent, J. L. Tetrahedron 2000, 56, 3263.
(l) Gibson, S. E.; Stevenazzi, A. Angew. Chem., Int. Ed. 2003, 42, 1800.
(m) Shibata, T. Adv. Synth. Catal. 2006, 348, 2328.
(6) For other excellent transition-metal-catalyzed [3 + 2] cycloaddition
reactions to five-membered carbocycles that have not been developped to
their asymmetric versions, see: (a) Noyori, R.; Yokoyama, K.; Makino, S.;
Hayakawa, Y. J. Am. Chem. Soc. 1972, 94, 1772. (b) Noyori, R.; Shimizu,
F.; Hayakawa, Y. Tetrahedron Lett. 1978, 19, 2091. (c) Binger, P.;
Schuchardt, U. Chem. Ber 1980, 113, 1063. (d) Binger, P.; Doyle, M. J.;
Benn, R. Chem. Ber 1983, 116, 1. (e) Binger, P.; Freund, A.; Wedemann,
P. Tetrahedron 1989, 45, 2887. (f) Lautens, M.; Ren, Y.; Delanghe,
P. H. M. J. Am. Chem. Soc. 1994, 116, 8821. (g) Lautens, M.; Ren, Y.
J. Am. Chem. Soc. 1996, 118, 9597. (h) Chang, S.; Park, E. U. J. Am.
Chem. Soc. 2000, 130, 17268. (i) de Meijere, A.; Flynn, B. L. J. Org.
Chem. 2001, 66, 1747. (j) Delgado, A.; Rodríquez, J. R.; Castedo, L.;
Mascarenas, J. L. J. Am. Chem. Soc. 2003, 125, 9282. (k) Duran
́
, J.;
Gulías, M.; Castedo, L.; Mascarenas, J. L. Org. Lett. 2005, 7, 5693.
̃
̃
(l) Gulías, M.; García, R.; Delgado, A.; Castedo, L.; Mascarenas, J. L.
J. Am. Chem. Soc. 2006, 128, 384. (m) Barluenga, J.; Barrio, P.; Riesgo,
̃
́ ́
L.; Lopez, L. A.; Tomas, M. J. Am. Chem. Soc. 2007, 129, 14422.
(7) For our previous [3 + 2] cycloaddition reactions and their
reaction mechanisms, see: (a) Jiao, L.; Lin, M.; Yu, Z.-X. Chem.
Commun. 2010, 46, 1059. (b) Jiao, L.; Lin, M.; Yu, Z.-X. J. Am. Chem.
Soc. 2011, 133, 447.
(8) For other cycloaddition using unactivated VCPs as three-carbon
units, see: (a) Jiao, L.; Ye, S.; Yu, Z.-X. J. Am. Chem. Soc. 2008, 130,
7178. (b) Li, Q.; Jiang, G.-J.; Jiao, L.; Yu, Z.-X. Org. Lett. 2010, 12,
1332. (c) Jiao, L.; Lin, M.; Zhuo, L.-G.; Yu, Z.-X. Org. Lett. 2010, 12,
2528.
(9) Representative reports on intramolecular cycloaddition of VCP
derivatives as a five-carbon unit: (a) Wender, P. A.; Takahashi, H.; Witulski,
B. J. Am. Chem. Soc. 1995, 117, 4720. (b) Wender, P. A.; Sperandio, D.
J. Org. Chem. 1998, 63, 4164. (c) Trost, B. M.; Toste, F. D.; Shen, H.
J. Am. Chem. Soc. 2000, 122, 2379. (d) Wang, Y.; Wang, J.; Su, J.; Huang,
F.; Jiao, L.; Liang, Y.; Yang, D.; Zhang, S.; Wender, P. A.; Yu, Z.-X. J. Am.
(14) Frisch, M. J.; et al. Gaussian 09, Revision A.02; Gaussion Inc.:
Wallingford, CT, 2009.
(15) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.;
Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (c) Hehre, W. J.;
Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital
Theory; Wiley: New York, 1986.
(16) (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
(b) Dunning, T. H., Jr.; Hay, P. J. In Modern Theoretical Chemistry;
Schaefer, H. F., III, Ed.; Plenum Press: New York, 1977; pp 1−28.
(17) (a) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
(b) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.
(18) The [3 + 2] reactions were conducted at 50−70 °C; to
transform the free energies to these reaction temperatures, the
computed values of thermal corrections and entropies at 298 K can be
used as approximated ones.
(19) (a) Nakamura, E.; Yoshikai, N.; Yamanaka, M. J. Am. Chem. Soc.
2002, 124, 7181. (b) Baik, M.-H.; Baum, E. W.; Burland, M. C.; Evans,
P. A. J. Am. Chem. Soc. 2005, 127, 1602. (c) Montero-Campillo, M. M.;
Rodriguez-Otero, J.; Cabaleiro-Lago, E. M. Tetrahedron 2008, 64,
6215. (d) Wang, H.; Sawyer, J. R.; Evans, P. A.; Baik, M.-H. Angew.
Chem., Int. Ed. 2008, 47, 342. (e) Montero-Campillo, M. M.;
Cabaleiro-Lago, E. M.; Rodriguez-Otero, J. J. Phys. Chem. A 2008,
112, 9068. (f) Liang, Y.; Zhou, H.; Yu, Z.-X. J. Am. Chem. Soc. 2009,
131, 17783. (g) Hansen, J.; Autschbach, J.; Davies, H. M. L. J. Org.
Chem. 2009, 74, 6555. (h) Schwartsburd, L.; Iron, M. A.;
Konstantinovski, L.; Ben-Ari., E.; Milstein, D. Organometallics 2011,
30, 2721. (i) Ding, K.; Miller, D. L.; Young, V. G. Jr.; Lu, C. C. Inorg.
Chem. 2011, 50, 2545.
Chem. Soc. 2007, 129, 10060. (e) Furstner, A.; Majima, K.; Martín, R.;
̈
Krause, H.; Kattnig, E.; Goddard, R.; Lehmann, C. W. J. Am. Chem. Soc.
2008, 130, 1992. (f) Huang, F.; Yao, Z.-K.; Wang, Y.; Wang, Y.; Zhang, J.;
Yu, Z.-X. Chem. Asian J. 2010, 5, 1555. (g) Lin, M.; Li, F.; Jiao, L.; Yu,
Z.-X. J. Am. Chem. Soc. 2011, 133, 1690. (h) Liang, Y.; Jiang, X.; Yu, Z.-X.
Chem. Commun. 2011, 47, 6659. For asymmetric [5 + 2] cycloaddition
reactions, see: (i) Wender, P. A.; Haustedt, L. O.; Lim, J.; Love, J. A.;
Williams, T. J.; Yoon, J.-Y. J. Am. Chem. Soc. 2006, 128, 6302. (j) Shintani,
R.; Nakatsu, H.; Takatsu, K.; Hayashi, T. Chem.Eur. J. 2009, 15, 8692.
(10) For reviews, see: (a) Shimizu, M. Angew. Chem., Int. Ed. 2011,
50, 5998. (b) Hawner, C.; Alexakis, A. Chem. Commun. 2010, 46, 7295.
(c) Bella, M.; Gasperi, T. Synthesis 2009, 1583. (d) Riant, O.;
Hannedouche, J. Org. Biomol. Chem. 2007, 5, 873. (e) Marek, I.;
Sklute, G. Chem. Commun. 2007, 1683. (f) Cozzi, P. G.; Hilgraf, R.;
Zimmermann, N. Eur. J. Org. Chem. 2007, 5969. (g) Trost, B. M.;
Jiang, C. Synthesis 2006, 369. (h) Christoffers, J.; Baro, A. Adv. Synth.
Catal. 2005, 347, 1473. (i) Douglas, C. J.; Overman, L. E. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 5363. (j) Christoffers, J.; Baro, A. Angew.
Chem., Int. Ed. 2003, 42, 1688. (k) Christoffers, J.; Mann, A. Angew.
Chem., Int. Ed. 2001, 40, 4591. (l) Corey, E. J.; Guzman-Perez, A.
Angew. Chem., Int. Ed. 1998, 37, 388. (m) Fuji, K. Chem. Rev. 1993, 93,
2037.
(11) For recent examples of DFT calculations on the understanding of
Rh-catalyzed [m + n] and [m + n + o] carbocyclization reactions, see:
(a) [(2 + 2) + 1]: Baik, M.-H.; Mazumder, S.; Ricci, P.; Sawyer, J. R.;
Song, Y.-G.; Wang, H.; Evans, P. A. J. Am. Chem. Soc. 2011, 133, 7621.
405
dx.doi.org/10.1021/ja2082119 | J. Am. Chem.Soc. 2012, 134, 398−405