Organometallics
Communication
Scheme 2. Possible Mechanisms for Reactions of 2 with
ArNCO and ArNCS
ACKNOWLEDGMENTS
■
This work was supported by the Ministry of Education,
Culture, Sports, Science and Technology of Japan (Grants-in-
Aid for Scientific Research Nos. 18064003, 20038002, and
21550054).
REFERENCES
■
(1) For recent reviews of carbene complexes. see: (a) Tonka, T. M.;
Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18−29. (b) Schrock, R. R.
Chem. Rev. 2002, 102, 145−179. (c) Schrock, R. R.; Hoveyda, A. H.
Angew. Chem., Int. Ed. 2003, 42, 4592−4633. (d) Grubbs, R. H. Angew.
Chem., Int. Ed. 2006, 45, 3760−3765. (e) Whited, M. T.; Grubbs, R. H.
Acc. Chem. Res. 2009, 42, 1607−1616. (f) Schrock, R. R. Chem. Rev.
2009, 109, 3211−3226. (g) Hoveyda, A. H.; Malcolmson, S. J.; Meek,
S. J.; Zhugralin, A. R. Angew. Chem., Int. Ed. 2010, 49, 34−44 and
references cited therein.
(2) (a) For recent reviews of silylene complexes, see: (a) Eisen, M. S.
In The Chemistry of Organic Silicon Compounds; Rappoport, Z.,
Apeloig, Y., Eds.; Wiley: New York, 1998; Vol. 2, Chapter 35.
(b) Ogino, H. Chem. Rec. 2002, 2, 291−306. (c) Okazaki, M.; Tobita,
H.; Ogino, H. Dalton Trans. 2003, 493−506. (d) Tilley, T. D. Acc.
Chem. Res. 2007, 40, 712−719 and references cited therein.
(3) Mitchell, G. P.; Tilley, T. D. J. Am. Chem. Soc. 1997, 119, 11236−
11243.
(4) (a) Watanabe, T.; Hashimoto, H.; Tobita, H. Angew. Chem., Int.
Ed. 2004, 43, 218−221. (b) Watanabe, T.; Hashimoto, H.; Tobita, H.
J. Am. Chem. Soc. 2006, 128, 2176−2177. (c) Watanabe, T.;
Hashimoto, H.; Tobita, H. J. Am. Chem. Soc. 2007, 129, 11338−
11339. (d) Hashimoto, H.; Ochiai, M.; Tobita, H. J. Organomet. Chem.
2007, 692, 36−43.
(5) (a) Ochiai, M.; Hashimoto, H.; Tobita, H. Angew. Chem., Int. Ed.
2007, 46, 8192−8194. (b) Ochiai, M.; Hashimoto, H.; Tobita, H.
Dalton Trans. 2009, 1812−1814.
(6) (a) Feldman, J. D.; Peters, J. C.; Tilley, T. D. Organometallics
2002, 21, 4065−4075. (b) Glaser, P. B.; Tilley, T. D. J. Am. Chem. Soc.
2003, 125, 13640−13641. (c) Calimano, E.; Tilley, T. D. J. Am. Chem.
Soc. 2008, 130, 9226−9227. (d) Calimano, E.; Tilley, T. D. J. Am.
Chem. Soc. 2009, 131, 11161−11173.
coordination is so weak that the central carbon is not
sufficiently polarized to accept hydride migration from Ru.
Instead, [2 + 2] cycloaddition between the RuSi and CS
bonds leads to D, from which reductive elimination of the Si−
H bond and coordination of sulfur to the metal center occur to
generate E. The weak C−S bond of E cleaves easily to give 4.
The alternative route II involves coordination of ArNCS to the
ruthenium atom of the unsaturated silyl complex produced by
1,2-H migration from Ru to Si in 2. Subsequent silyl migration
to the sulfur atom in F produces E and then 4. At present, we
do not have any concrete evidence to distinguish these two
routes. It should be noted that the aforementioned reaction of
[Cp*(Me3P)3RuSiMe2]+ with RNCO gave the N-silylated
product [Cp*(Me3P)2Ru(SiMe2NRCO)]+, having a Ru−Si−
N−C four-membered ring instead of an O-silylated product. In
this case, possibly the steric repulsion between the relatively
bulky Cp*(Me3P)2Ru fragment and the R group on RNCO
prevents [2 + 2] cycloaddition between the RuSi and CO
bonds accompanied by O-silylation.
In summary, we have found new reactions of neutral silylene
complex 2 with isocyanates and an isothiocyanate. The former
resulted in hydrosilylation of the CO bond to form a novel
Ru−Si−O−C−N five-membered ring, while the latter resulted
in CS double-bond cleavage. These reactions demonstrate
the existence of new types of bond-forming and -breaking
processes induced by a silylene complex. Further reactivity
studies of 2 are underway.
(7) Crystal data (150 K) for 3a: C31H55NO2Si4Ru; fw 687.19;
monoclinic; P21/c; a = 9.354(5) Å; b = 23.530(14) Å; c = 16.460(10)
Å; β = 91.667(2)°, V = 3621(4) Å3; calcd density 1.273 Mg/m3; Z = 4.
Final R indices: R1 = 0.0783, wR2 = 0.2191 for 5276 reflections with I >
2σ(I). Crystal data (150 K) for 4: C31H55NOSSi4Ru; fw 703.25;
triclinic; P1; a = 11.7791(6) Å; b = 12.1471(5) Å; c = 14.9347(9) Å;
̅
α = 86.458(2)°; β = 74.9512(17)°; γ = 63.014(4)°; V = 1835.02(16) Å3;
calcd density 1.273 Mg/m3; Z = 2. Final R indices: R1 = 0.0703, wR2 =
0.1717 for 6515 reflections with I > 2σ(I). Crystallographic information
has been deposited with the Cambridge Crystallographic Data Centre:
CCDC 837728 (3a), CCDC 804700 (4).
(8) (a) Kato, M.; Kawano, M.; Taniguchi, H.; Funaki, M.; Moriyama,
H.; Sato, T.; Matsumoto, K. Inorg. Chem. 1992, 31, 26−35. (b) Field,
L. D.; Shaw, W. J.; Turner, P. Chem. Commun. 2002, 46−47. (c) Field,
L. D.; Shaw, W. J.; Turner, P. Organometallics 2001, 20, 3491−3499.
(9) Based on a survey of the Cambridge Structural Database, CSD
version 5.27 (November 2005).
ASSOCIATED CONTENT
■
(10) (a) Ueno, K.; Tobita, H.; Shimoi, M.; Ogino, H. J. Am. Chem.
Soc. 1988, 110, 4092−4093. (b) Tobita, H.; Ueno, K.; Shimoi, M.;
Ogino, H. J. Am. Chem. Soc. 1990, 112, 3415−3420. (c) Takeuchi, T.;
Tobita, H.; Ogino, H. Organometallics 1991, 10, 835−836. (d) Tobita,
H.; Sato, T.; Okazaki, M.; Ogino, H. J. Organomet. Chem. 2000, 611,
314−322.
S
* Supporting Information
Text giving experimental details and CIF files giving and X-ray
crystallographic data of 3b and 4. This material is available free
(11) Otter, J. C.; Adamson, C. L.; Yoder, C. H.; Rheingold, A. L.
Organometallics 1990, 9, 1557−1562.
AUTHOR INFORMATION
■
Corresponding Author
(12) Hashimoto, H.; Fukuda, T.; Tobita, H. New J. Chem. 2010, 34,
1723−1730.
*Tel: +81-22-795-6539. Fax: +81-22-795-6543. E-mail:
(H.T.).
(13) Beaumont, I. R.; Begley, M. J.; Harrison, S.; Wright, A. H. Chem.
Commun. 1990, 1713−1715.
529
dx.doi.org/10.1021/om2010854 | Organometallics 2012, 31, 527−530