R. Wang et al. / Tetrahedron Letters 53 (2012) 442–445
445
O
References and notes
S
S
N
1.0 eq PhI(OAc)2
DMF, 50 C
N
1. (a) Llauger, L.; He, H. Z.; Kim, J.; Aguirre, J.; Rosen, Z.; Peters, U.; Davies, P.;
Chiosis, G. J. Med. Chem. 2005, 48, 2892–2905; (b) Kiihler, T. C.; Fryklund, J.;
Bergman, N.; Weilitz, J.; Lee, A.; Larssonl, H. J. Med. Chem. 1995, 38, 4906–4916;
(c) Madsen, P.; Knudsen, L. B.; Wiberg, F. C.; Carr, R. D. J. Med. Chem. 1998, 41,
5150–5157; (d) Pietrancosta, N.; Moumen, A.; Dono, R.; Lingor, P.; Planchamp,
V.; Lamballe, F.; Bähr, M.; Kraus, J.-L.; Maina, F. J. Med. Chem. 2006, 49, 3645; (e)
Mavrova, A. T.; Vuchev, D.; Anichina, K.; Vassilev, N. Eur. J. Med. Chem. 2010, 45,
5856.
N
o
N
3a
5a
70%
Scheme 2. Oxidation of 3a by PhI(OAc)2. Reagents and conditions: 0.5 mmol of 3a,
0.5 mmol of PhI(OAc)2, 2 mL of DMF, 50 °C, overnight.
2. Gurrala, S.; Badu, Y. R.; Rao, G. V.; Latha, B. M. Int. J. Phar. Pharm. Sci. 2011, 3,
217–220.
3. Gupta1, S. K.; Pancholi, S. S. Der Pharma Chemica 2011, 3, 274–279.
4. Huang, W.; Zhao, P. L.; Liu, C. L.; Chen, Q.; Liu, Z. M.; Yang, G. F. J. Agric. Food
Chem. 2007, 55, 3004–3010.
5. Okamoto, O.; Kobayashi, K.; Kawamoto, H.; Ito, S.; Satoh, A.; Kato, T.;
Yamamoto, I.; Mizutani, S.; Hashimoto, M.; Shimizu, A.; Sakoh, H.; Nagatomi,
Y.; Iwasawa, Y.; Takahashi, H.; Ishii, Y.; Ozaki, S.; Ohta, H. Bioorg. Med. Chem.
Lett. 2008, 17, 3278–3281.
6. Aljourani, J.; Raeissi, K.; Golozar, M. A. Corros. Sci. 2009, 51, 1836–1843.
7. Humenyuk, O. L.; Syza, O. I.; Krasovs0kyi, O. M. Mater. Sci. 2007, 43, 91–101.
8. Narkhede, H. P.; More, U. B.; Dalal, D. S.; Mahulikar, P. P. J. Sci. Ind. Res. 2008, 67,
374–376.
On the basis of these observations, the possible process is pro-
posed in Scheme 1. Firstly, the base abstracted a proton from 2 and
then a SN2 reaction occurred giving the intermediate. Then the inter-
mediate underwent an intramolecular C–N bond coupling in a Cu(I)/
ligand/base system. To our delight the proposed intermediate 6a
prepared by a SN2 reaction17 reacted well in the Cu(I)/ligand/base
system giving the same desired product 3a. The procedure also con-
firmed the structure of 3a. The possibility of CH2Br–HN SN2/(sp2)C–S
coupling cascade reaction product was ruled out.
It was worth mentioning that imidazobenzothiazine and primi-
dobenzothiazine derivatives have the potential for further function-
alization such as oxidation, halogenation etc. Here an oxidation was
carried out to give a sulfoxide, which might comprise another set of
library (Scheme 2).
9. Dias Filho, N. L. Mikrochim. Acta 1999, 130, 233–240.
10. Siegfried, R.; Stephan, B.; Walter, G.; Ulrich. R.; Martin, R.; Hanno, W.; Rainer,
E.; Hein-peter, K.; Kerstin, H. W.O. Patent 9,940,094; 1999; Chem. Abstr. 1999,
131, 144608.
11. Yasushi, I.; Mitsunori, O.; Noboru, S. J.P. Patent 60,233,649; 1985; Chem. Abstr.
1985, 104, 196909.
12. Gauthier, J.; Duceppe, J. S. J. Heterocycl. Chem. 1984, 21, 1081–1086.
13. Dolbier, W. R.; Burkholder, J. C.; Abboud, K. A.; Loehle, D. J. Org. Chem. 1994, 59,
7688–7694.
14. For reviews, see: (a) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42,
5400; (b) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337;
(c) Dehli, J. R.; Legros, J.; Bolm, C. Chem. Commun. 2005, 973; (d) Evano, G.;
Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054; (e) Ma, D. W.; Cai, Q. Acc.
Chem. Res. 2008, 41, 1450; (f) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed.
2008, 47, 3096; (g) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48,
6954; (h) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2234.
15. For recent one-pot reactions based on copper-catalyzed C–N, O, S coupling, see:
(a) Zou, B. L.; Yuan, Q. L.; Ma, D. W. Angew. Chem., Int. Ed. 2007, 46, 2598; (b)
Martin, R.; Cuenca, A.; Buchwald, S. L. Org. Lett. 2007, 9, 5521; (c) Martin, R.;
Rivero, M. R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45, 7079; (d) Cai, Q.;
Li, Z. Q.; Wei, J. J.; Fu, L. B.; Ha, C. Y.; Pei, D. Q.; Ding, K. Org. Lett. 2010, 12, 1500;
(e) Wang, C.; Li, S. F.; Liu, H. X.; Fu, Y. Y.; Jiang, H. J. Org. Chem. 2010, 75, 7936;
(f) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem., Int. Ed. 2010, 49, 2840.
16. (a) Lv, X.; Bao, W. L. J. Org. Chem. 2009, 74, 5618; (b) Chen, D. B.; Wang, Z. J.;
Bao, W. L. J. Org. Chem. 2010, 75, 5768.
In conclusion, synthesis of imidazobenzothiazine and primi-
dobenzothiazine derivatives by the approach of aliphatic SN2 substi-
tution/Cu(I) catalyzed Ullmann coupling cascade process has been
developed. The efficiency and substituent tolerance of this proce-
dure have been fully demonstrated by the data in Tables 1 and 2.
Acknowledgment
This work was financially supported by the Natural Science
Foundation of China (No. 21072168).
Supplementary data
17. (a) Dalal, D. S.; Pawar, N. S.; Mahulikar, P. P. OPPI 2005, 6, 540; (b) Klimešová,
Supplementary data associated with this article can be found, in
ˇ
K.; Kocí, J.; Pour, M.; Stachel, J.; Waisser, K.; Kaustová, J. Eur. J. Med. Chem. 2002,
37, 415.