Recent examples include the treatment of o-hydroxy-
benzyl acetate with isopropylmagesium chloride,3a the
reaction of [trialkyl(or triaryl)silylmethyl]-1,4-benzoqui-
nones with oxygen nucleophiles,3b fluoride induced
desilylation of silyl derivatives of o-hydroxybenzyl
acetates1r and -benzyl iodides,3c and the base catalyzed
or sodium dithionite reduction of (2-hydroxy-1-phenyl)-
methyltrimethylammonium iodides.3d Less popular
methods for o-QM generation involve the use of metal
complexes such as the selective alkyl deprotonation of
oxo-dienyl rhodium complexes {Cp*Rh[η5-(MeC5H4O
or i-PrC5H4O)][BF4]} by base to give rhodiumÀo-QM
complexes {Cp*Rh[η4-(C7H6O or Me2C7H4O)]}.3e
Considering the importance of o-QMs as active inter-
mediates in many biological processes and in drugs, we
became interested in developing a mild and efficient meth-
od for o-QM production that would be useful in drug
research. We therefore present a novel fluoride-induced
desilylation of nitrate esters 4a,b and 8 (Schemes 1, 3)
leading to o-QMs or o-naphthoquinone methides that are
thentrappedby a rangeof nucleophiles or dienophiles. The
starting materials used to synthesize nitrate esters 4a,b are
the commercially available 2-hydroxybenzaldehyde (1a)
and 2-hydroxy-1-napthaldehyde (1b) (Scheme 1). In the
first step of this synthesis, the hydroxy group of 1a,b
undergoes protection using tert-butyldimethylsilyl chlo-
ride (TBSCl), DMAP, and NEt3 in dichloromethane, to
yield the silyl ethers 2a,b. The silyl ethers were then reduced
using NaBH4 in methanol to give the alcohols 3a,b. The
alcohol derivatives were then reacted with AgNO3 and
SOCl2 to afford the desired nitrate esters 4a,b in 55 and
63% yields, respectively. In order to test the viability of
the aforementioned method of in situ o-QM generation,
Michael addition was the first reaction chosen to trap these
intermediates. Thus the nitrate ester 4a (Table 1) was
dissolved in dry THF under an argon atmosphere, the
temperature was lowered to À78 °C, and then the appro-
priate nucleophile (RH) was added followed by dropwise
addition of TBAF. The reaction is postulated to proceed
by attack of the fluoride anion onto the silyl ether, break-
age of the SiÀO bond, and elimination of a nitrate anion
to generate the corresponding o-QM in situ. The latter is
then trapped by different C, O, S, and N nucleophiles to
generate Michael addition products 5aÀm. The type of
nucleophiles used, the products, and the yields obtained
are shown in Table 1.
Scheme 1. Synthesis of 2-(tert-Butyldimethylsilyloxy)benzyl
Nitrate 4a and (2-{[tert-Butyl(dimethyl)silyl]oxy}-1-naphthyl)-
methyl Nitrate 4b
(1) (a) Quinone Methides. Rokita, S. E.. Ed. Reactive Intermediates
in Chemistry and Biology, Vol. 1; Wiley: Hoboken, NJ, 2009. (b) Wang,
H.; Wang, Y.; Han, K.-L.; Peng, X.-J. J. Org. Chem. 2005, 70, 4910. (c) Xu,
Z.; Li, Y.; Xiang, Q.; Pei, Z.; Liu, X.; Lu, B.; Chen, L.; Wang, G.; Pang,
J.; Lin, Y. J. Med. Chem. 2010, 53, 4642. (d) Pettigrew, J. D.; Wilson,
P. D. J. Org. Chem. 2006, 71, 1620. (e) Tomasz, M.; Das, A.; Tang, K. S.;
Ford, M. G. J.; Minnock, A.; Musser, S.; Waring, M. J. J. Am. Chem.
Soc. 1998, 120, 11581. (f) Weng, X.; Ren, L.; Weng, L.; Huang, J.; Zhu,
S.; Zhou, X.; Weng, L. Angew. Chem., Int. Ed. 2007, 46, 8020. (g)
Hulsman, N.; Medema, J. P.; Bos, C.; Jongejan, A.; Leurs, R.; Smit,
M. J.; Esch, I. J. P.; Richel, D.; Wijtmans, M. J. Med. Chem. 2007, 5,
2424. (h) Van De Water, R. W.; Pettus, T. R. R. Tetrahedron 2002, 58,
ꢀ
5367. (i) Leo, E. A.; Delgado, J.; Domingo, L. R.; Espinos, A.; Miranda,
M. A.; Tormos, R. J. Org. Chem. 2003, 68, 9643. (j) Brousmiche, D. W.;
Wan, P. J. Photochem. Photobiol. A: Chem. 2002, 149, 71. (k) Diao, L.;
ꢀ
ꢁ ꢀ
ꢀ
Wan, P. Can. J. Chem. 2008, 86, 105. (l) Basaric, N.; Zabcic, I.; Mlinaric-
ꢀ
Majerski, M.; Wan, P. J. Org. Chem. 2010, 75, 102. (m) Basaric, N.;
ꢁ
ꢁ ꢀ
ꢀ
Cindro, N.; Zabcic, I.; Mlinaric-Majerski, K.; Hou, Y.; Wan, P. Can. J.
Chem. 2011, 89, 221. (n) Arumugam, S.; Popik, V. V. J. Am. Chem. Soc.
2009, 131, 11892. (o) Arumugam, S.; Popik, V. V. J. Org. Chem. 2010, 75,
7338. (p) Chiang, Y.; Kresge, A. J.; Zhu, Y. Phys. Chem. Chem. Phys.
2003, 5, 1039. (q) Matsumoto, J.; Ishizu, M.; Kawano, R.; Hesaka, D.;
Shiragami, T.; Hayashi, Y.; Yamashita, T.; Yasuda, M. Tetrahedron
2005, 61, 5735. (r) Weinert, E. E.; Dondi, R.; Colloredo-Melz, S.;
Frankenfield, K. N.; Mitchell, C. H.; Freccero, M.; Rokita, S. E. J.
Am. Chem. Soc. 2006, 128, 11940. (s) Percivalle, C.; La Rosa, A.; Verga,
D.; Doria, F.; Mella, M.; Palumbo, M.; Di Antonio, M.; Freccero, M. J.
Org. Chem. 2011, 76, 3096.
The ability of a dienophile to react with the in situ
generated o-QM was explored next. The nitrate ester 4a
(Scheme 2) was dissolved in dry THF under an argon
atmosphere, the temperature was lowered to À78 °C, and
then a 100-fold excess of the appropriate dienophile, ethyl
vinyl ether (EVE), or ethyl vinyl sulfide was added fol-
lowed by dropwise addition of TBAF. The o-QM gener-
ated in this reaction acts as a heterodiene which reacts with
the respective dienophile and undergoes “inverse electron-
demand” hetero-DielsÀAlder reaction to yield the corre-
sponding chromanes 6a,b in 20 and 17% yields, respec-
tively. The low yield of these reactions may be accounted
for by the competing facile trimerization of the very
reactive o-QM. The insoluble material from the reaction
mixtures of 6a,b was recrystallized from acetone, and the
(2) (a) Rodriguez, R.; Adlington, R. M.; Moses, J. E.; Cowley, A.;
Baldwin, J. E. Org. Lett. 2004, 6, 3617. (b) Rodriguez, R.; Moses, J. E.;
Adlington, R. M.; Baldwin, J. E. Org. Biomol. Chem. 2005, 3, 3488. (c)
Bray, C. D. Synlett 2008, 2500. (d) Gharpure, S. J.; Sathiyanarayanan,
A. M.; Jonnalagadda, P. Tetrahedron Lett. 2008, 49, 2974. (e) Sugimoto,
H.; Nakamura, S.; Ohwada, T. Adv. Synth. Catal. 2007, 349, 669. (f)
Sugimoto, H.; Nakamura, S.; Ohwada, T. J. Org. Chem. 2007, 72, 10088.
(g) Liu, J.; Liu, H.; van Breemen, R. B.; Thatcher, G. R. J.; Bolton, J. L.
Chem. Res. Toxicol. 2005, 18, 174. (h) Radomkit, S.; Sarnpitak, P.;
Tummatorn, J.; Batsomboon, P.; Ruchirawat, S.; Ploypradith, P.
Tetrahedron 2011, 67, 3904.
(3) (a) Bray, C. D. Org. Biomol. Chem. 2008, 6, 2815. (b) Ezcurrae,
J. E.; Karabelas, K.; Moore, H. W. Tetrahedron 2005, 61, 275. (c)
Barrero, A. F.; Quılez del Moral, J. F.; Herrador, M. M.; Arteaga, P.;
´
ꢀ
ꢀ
Cortes, M.; Benites, J.; Rosellon, A. Tetrahedron 2006, 62, 6012. (d) Di
Antonio, M.; Doria, F.; Mella, M.; Merli, D.; Profumo, A.; Freccero, M.
J. Org. Chem. 2007, 72, 8354. (e) Hani Amouri, H.; Vaissermann, J.;
Rager, M. N.; Grotjahn, D. B. Organometallics 2000, 19, 5143.
(4) (a) Cavitt, S. B.; Sarrafizadeh, H. R.; Gardner, P. D. J. Org.
Chem. 1962, 27, 1211. (b) Mao, Y. L.; Boekelheide, V. Proc. Natl. Acad.
Sci. U.S.A. 1980, 77, 1732.
Org. Lett., Vol. 14, No. 2, 2012
585