LETTER
Vinyllactones via Allylic Oxidation
2006, 128, 9032.
2691
saponification4 led to the desired acid 21. Allylic oxida-
tion provided the separable lactones 22 in low yield and
selectivity (18%, syn/anti = 39:61). Omitting protecting
groups that can be cleaved under oxidative conditions, we
finally focused on the methyl-substituted acid 23 that was
conveniently synthesized from amide 18 (Scheme 7).11,13
Oxidative cyclization was straightforward (78%); howev-
er, the diastereomers were not separable at this stage (syn/
anti = 36:64). Nevertheless, after successful cross met-
athesis,14 the lactones 25a and 25b were readily isolated
(55%). Introduction of the Michael system was achieved
utilizing the protocol by Matsuo and Aizawa.15 The go-
niothalamin analogues 26 and ent-26 were obtained, and
the assignment of configuration of the stereogenic center
formed during allylic oxidation was further confirmed by
comparison of the specific rotation with goniothalamin
(27): while both S-enantiomers do have a negative value
[(S)-27: –170 (c 1.7, CHCl3); (S)-26: –153 (c 1.5,
CHCl3)], the R-enantiomers show positive values.16,17 It is
interesting to note that a number of structural features
have been included in structure–activity relationship stud-
ies,18 but additional substituents at the Michael system are
still elusive in such investigations. On the basis of the
present findings, the gap should be closed in due course.
(3) (a) Korpak, M.; Pietruszka, J. Adv. Synth. Catal. 2011, 353,
1420. (b) Bischop, M.; Doum, V.; Nordschild née Rieche,
A. C. M.; Pietruszka, J.; Sandkuhl, D. Synthesis 2010, 527.
(c) Pietruszka, J.; Rieche, A. C. M. Adv. Synth. Catal. 2008,
350, 1407. (d) Pietruszka, J.; Rieche, A. C. M.; Schöne, N.
Synlett 2007, 2525. (e) Pietruszka, J.; Wilhelm, T. Synlett
2003, 1698.
(4) Walborsky, H. M.; Topolski, M.; Hamdouchi, C.;
Pankowski, J. J. Org. Chem. 1992, 57, 6188.
(5) (a) For compound 9a, see: DeMartino, M. P.; Chen, K.;
Baran, P. S. J. Am. Chem. Soc. 2008, 130, 11546. (b) For
compounds 9b–e, see: Kaga, H.; Miura, M.; Orito, K. J. Org.
Chem. 1989, 54, 3477.
(6) For a recent review, see: Caddick, S.; Fitzmaurice, R.
Tetrahedron 2009, 65, 3325.
(7) Covell Dustin, J.; White, M. C. Angew. Chem. Int. Ed. 2008,
47, 6448.
(8) Hiebel, M.-A.; Pelotier, B.; Goekjian, P.; Piva, O. Eur. J.
Org. Chem. 2008, 713.
(9) Wang, Y.-G.; Kobayashi, Y. Org. Lett. 2002, 4, 4615.
(10) The syn isomer was recently utilized for the synthesis of the
lyngbouillodide macrolactone core: Webb, D.; van den
Heuvel, A.; Koegl, M.; Ley, S. V. Synlett 2009, 2320.
(11) Guerlavais, V.; Carroll, P. J.; Joullié, M. M. Tetrahedron:
Asymmetry 2002, 13, 675.
(12) (a) Fürstner, A.; Radkowski, K.; Wirtz, C.; Goddard, R.;
Lehmann, C. W.; Mynott, R. J. Am. Chem. Soc. 2002, 124,
7061. (b) Evans, D. A.; Weber, A. E. J. Am. Chem. Soc.
1987, 109, 7151. (c) Macritchie, J. A.; Silcock, A.; Willis,
C. L. Tetrahedron: Asymmetry 1997, 8, 3895.
(13) Nagai, K.; Doi, T.; Sekiguchi, T.; Namatame, I.; Sunazuka,
T.; Tomoda, H.; Omura, S.; Takahashi, T. J. Comb. Chem.
2005, 8, 103.
(14) (a) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hovedya,
A. H. J. Am. Chem. Soc. 2000, 122, 8168. (b) Gessler, S.;
Randl, S.; Blechert, S. Tetrahedron Lett. 2000, 41, 9973.
(15) Matsuo, J.-i.; Aizawa, Y. Tetrahedron Lett. 2005, 46, 407.
(16) (a) Hlubucek, J. R.; Robertson, A. V. Aust. J. Chem. 1967,
20, 2199. (b) Bose, D. S.; Reddy, A. V. N.; Srikanth, B.
Synthesis 2008, 2323.
In summary, the present work demonstrates the scope of
the White catalyst for the synthesis of g- and d-lactones.
Substituent effects were investigated and culminated in
the first synthesis of new goniothalamin analogues 26 that
also allowed the confirmation of the absolute configura-
tion.
Acknowledgment
We gratefully acknowledge the Jürgen Manchot Stiftung (scholar-
ship for M.B.), the Deutsche Forschungsgemeinschaft, the Ministry
of Innovation, Science and Research of the German federal state of
North Rhine-Westphalia, the Heinrich Heine University Düssel-
dorf, and the Forschungszentrum Jülich GmbH for the generous
support of our projects. Donations from BASF AG, Chemetall
GmbH, and Wacker AG were greatly appreciated. We thank Birgit
Henßen, Christoph Lorenz, Vera Ophoven, Bea Paschold, and Truc
Pham for supporting experiments.
(17) Selected Data for Acid 23
[a]D20 +17.2 (c 0.96, CHCl3). IR (film): nmax = 3073, 2977,
2935, 2861, 2648, 1702, 1642, 1465, 1417, 1381, 1290,
1236, 1191, 996, 910, 812, 742 cm–1. 1H NMR (600 MHz,
CDCl3): d = 1.19 (d, 3JMe,2 = 7.0 Hz, 3 H, CH3), 1.41–1.49
(m, 3 H, 3-Ha, 4-H), 1.66–1.73 (m, 1 H, 3-Hb), 2.05–2.09 (m,
2 H, 5-H), 2.47 (mc, 1 H, 2-H), 4.96 (ddt, 3J7E,6 = 10.2 Hz,
2J7E,7Z = 2.0 Hz, 4J7E,5 = 1.2 Hz, 1 H, 7–HE), 5.01 (ddd,
3J7Z,6 = 17.1 Hz, 2J7Z,7E = 2.0 Hz, 4J7Z,5 = 1.6 Hz, 1 H, 7–HZ),
5.80 (ddt, 3J6,7Z = 17.1 Hz, 3J6,7E = 10.2 Hz, 3J6,5 = 6.7 Hz, 1
H, 6-H), 11.5 (br s, 1 H, COOH) ppm. 13C NMR (151 MHz,
CDCl3): d = 16.9 (CH3), 26.4 (C-4), 32.9 (C-3), 33.6 (C-5),
39.2 (C-2), 114.8 (C-7), 138.4 (C-6), 183.0 (C-1) ppm.
MS (EI, 70 eV): m/z (%) = 124 (2) [M – OH]+, 101 (3)
[C5H8O2]+, 96 (6) [C7H13]+, 87 (13) [C4H6O2]+, 74 (100)
[C3H5O2]+, 69 (90) [C4H6O]+, 55 (38) [C3H4O]+. Anal. Calcd
for C8H14O2 (142.20): C, 67.57; H, 9.92. Found: C, 67.52; H,
10.02.
References and Notes
(1) Selected examples: (a) Corey, E. J.; Guzman-Perez, A.;
Lazerwith, S. E. J. Am. Chem. Soc. 1997, 119, 11769.
(b) Jacobo, S. H.; Chang, C.-T.; Lee, G.-J.; Lawson, J. A.;
Powell, W. S.; Pratico, D.; FitzGerald, G. A.; Rokach, J.
J. Org. Chem. 2006, 71, 1370. (c) Mac, D. H.; Samineni, R.;
Petrignet, J.; Srihari, P.; Chandrasekhar, S.; Yadav, J. S.;
Grée, R. Chem Commun. 2009, 4717. (d) Fischer, T.;
Pietruszka, J. Adv. Synth. Catal. 2007, 348, 4388.
(e) Larock, R. C.; Hightower, T. R. J. Org. Chem. 1993, 58,
5298. (f) Annby, U.; Stenkula, M.; Andersson, C.-M.
Tetrahedron Lett. 1993, 34, 8545. (g) For a recent review on
Pd-catalyzed allylic C–H bond activation, see: Liu, G.; Wu,
Y. Top. Curr. Chem. 2010, 292, 195.
Selected Data for Vinyllactone 2519
IR (film): nmax = 3027, 2967, 2935, 2875, 1729, 1599, 1578,
1495, 1450, 1376, 1363, 1239, 1184, 1100, 1073, 1011, 969,
933, 749, 694 cm–1. MS (EI, 70 eV): m/z (%) = 216 (73)
[M]+, 187 (5) [C13H16O]+, 160 (7) [C11H12O]+, 146 (37)
[C10H10O]+, 129 (77) [C10H10]+, 115 (54) [C9H8]+, 104 (100)
[C8H7]+, 91 (61) [C7H6]+, 77 (30) [C6H5]+, 56 (80) [C4H8]+.
Anal. Calcd for C14H16O2 (216.28): C, 77.75; H, 7.46.
(2) Leading references: (a) Stang, E. M.; White, M. C. Angew.
Chem. Int. Ed. 2011, 50, 547. (b) Stang, E. M.; White, M. C.
Nat. Chem. 2009, 1, 2094. (c) Fraunhoffer, K. J.;
Prabagaran, N.; Sirois, L. E.; White, M. C. J. Am. Chem. Soc.
Synlett 2011, No. 18, 2689–2692 © Thieme Stuttgart · New York