Q. Abu-Salem et al. / Polyhedron 33 (2012) 297–301
301
[7] M.Z. Branzburg, T.F. Sysoeva, N.F. Shugal, N.M. Dyatlova, V.M. Agre, M.Z.
Gurevich, Koord. Khim. 12 (1986) 1658.
4. Conclusions
[8] L.R. Falvello, I. Pascual, M. Tomas, E.P. Urriolabeitia, J. Am. Chem. Soc. 119
(1997) 11894.
[9] L.R. Falvello, I. Pascual, M. Tomas, Inorg. Chim. Acta 229 (1995) 135.
[10] T. Palade, M. Nutiu, Rev. Chim. 37 (1986) 80.
[11] S. Shao, C. Chen, X. Huang, D. Gao, Z. Lin, D. Li, Jiegou Huaxue 15 (1996) 246.
[12] T.F. Sysoeva, Z.A. Starikova, M.Z. Gurevich, M.Z. Branzburg, Koord. Khim. 17
(1991) 971.
[13] R.D. Hart, B.W. Skelton, A.H. White, Aust. J. Chem. 45 (1992) 1927.
[14] C.-Z. Chen, S.-B. Shao, X.-Y. Huang, D.-S. Gao, Z.-B. Lin, Jiegou Huaxue 14 (1995)
356.
[15] J. Server-Carrio, E. Escriva, J.-V. Folgado, Polyhedron 17 (1998) 1495.
[16] A.-Q. Wu, G.-H. Guo, F.K. Zheng, X. Liu, G.-C. Guo, J.-S. Huang, Inorg. Chem.
Commun. 8 (2005) 182.
[17] E. Yang, R.Q. Zhuang, Y.E. Chen, Acta Crystallogr., Sect. E 62 (2006) m2901.
[18] Q. Yue, J. Yang, H.-M. Yuan, J.-S. Chen, Chin. J. Chem. 24 (2006) 1045.
[19] L. Zhang, J. Zhang, P.-X. Yin, J.-K. Cheng, Z.-J. Li, Y.-G. Yao, Z. Anorg. Allg. Chem.
632 (2006) 1902.
[20] J.M. Du, D.J. Kang, Chem. Lett. 36 (2007) 168.
[21] K. Sivashankar, A. Ranganathan, V.R. Pediretti, Proc. Ind. Acad. Sci.: Chem. Sci.
112 (2000) 147.
[22] H. Brunner, A. Hollmann, B. Nuber, M. Zabel, J. Organomet. Chem. 633 (2001) 1.
[23] C.-Z. Chen, Z.-B. Lin, J.-Q. Shi, X.-Y. Huan, D.-S. Gao, D. Li, H.-Y. Liang, Jiegou
Huaxue 13 (1994) 468.
[24] U. Müller, Z. Anorg. Allg. Chem. 422 (1976) 141.
[25] C. Elschenbroich, F. Lu, M. Nowotny, O. Burghaus, C. Pietzonka, K. Harms,
Organometallics 26 (2007) 4025.
[26] Y. Perez, S. Morante-Zarcero, I. Sierra, P. Gomez-Sal, M. Fajardo, A. Otero, I. del
Hierro, Inorg. Chim. Acta 360 (2007) 607.
[27] A. Antinolo, S. Garcia-Yuste, A. Otero, J.C. Perez-Flores, I. Lopez-Solera, A.M.
Rodriguez, J. Organomet. Chem. 692 (2007) 3328.
Commonly, kinetics and thermodynamics of square-planar d8
metal complexes are best understood in terms of trans-effect and
trans-influence [46]. As expected, the platinum complex (1) is
formed by substitution of chloride from cis-[PtCl2(PPh3)2] as the
kinetically stable product while, starting from the palladium pre-
cursor cis-[PdCl2(PPh3)2], the cis-isomer could not be detected even
as an intermediate apparently owing to its highly labile nature.
Comparable ligand properties of DMCꢁ1 and pyridine in their pen-
tacarbonylmetal complexes have been reported by us formerly
[31]. Assuming similar atomic radii of palladium and platinum
and following the arguments discussed for the trans-influence,
additional arguments for the ligand properties may be found here.
The trans-influence predicts bond weakening in the trans-L-M-L0 in
case that the ligands compete with the same metal orbitals. In fact,
in the palladium complex (2), the M–P distances are the longest
ones (see Tables 3 and 4) though steric interaction should be min-
imum. The marked difference in the M–N distances of the com-
plexes (1) and (2) may also figure the stronger trans-influence of
the PPh3 ligand compared with Clꢁ1 and DMCꢁ1, for which similar,
i.e. medium
cussed here.
r-donor and weak p-donor properties, may be dis-
Acknowledgments
[28] F.A. Cotton, J.P. Donahue, C.A. Murillo, L.M. Perez, R. Yu, J. Am. Chem. Soc. 125
(2003) 8900.
[29] A.W.v. Hofmann, Ber. Dtsch. Chem. Ges. 14 (1881) 2728.
[30] G.R. Desiraju, Th. Steiner, The Weak Hydrogen Bond, Oxford University Press,
Oxford (UK), 1999.
[31] Q. Abu-Salem, C.M. Mößmer, E. Niquet, N. Kuhn, Z. Anorg. Allg. Chem. 634
(2008) 2463.
Financial support by the Deutsche Forschungsgemeinschaft and
Al al-Bayt University (Funding Short term research scholarship for
Q. Abu-Salem) is gratefully acknowledged (Ref.: VO 141/48-1). Q.
Abu-Salem thanks Prof. Klaus-Peter Zeller for helpful discussions
with mass spectral analyses.
[32] Q. Abu-Salem, N. Kuhn, C.M. Mößmer, M. Steimann, Z. Anorg. Allg. Chem. 634
(2008) 2337.
[33] N. Kuhn, Q. Abu-Salem, C.M. Mößmer, M. Steimann, Z. Anorg. Allg. Chem. 634
(2008) 1276.
[34] G.M. Sheldrick, SHELXS/L-97, Programs for Crystal Structure Determination,
University of Göttingen, Göttingen (Germany), 1997.
[35] Q. Abu-Salem, 1,3-Dimethylcyanuric Acid Derivatives, Ph.D. Thesis, University
of Tübingen, Tübingen, 2009.
[36] L. Levi, C.E. Hubley, Anal. Chem. 28 (1956) 1591.
[37] K. Suzuki, H. Yamamoto, Inorg. Chim. Acta 208 (1993) 225.
[38] M. Mehicic, F.A. Pesa, J.G. Grasselli, J. Phys. Chem. 88 (1984) 581.
[39] A. Romerosa, J.S. Varela, M.A. Hidalgo, J.C.A. Roso´n, E. Colacio, Inorg. Chem. 36
(1997) 3784.
Appendix A. Supplementary data
CCDC 838104 and 838103 contain the supplementary crystallo-
graphic data for (1ꢀCH2Cl2) and (2ꢀ2CHCl3), respectively. These data
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-
336-033; or e-mail: deposit@ccdc.cam.ac.uk.
[40] P. Bergamini, O. Bortolini, O. Curcuruto, M. Hamdan, J. Mass Spectrom. (1995)
S77.
[41] W. Henderson, J. Fawcett, R.D.W. Kemmitt, P. McKenna, D.R. Russell,
Polyhedron 16 (1997) 2455.
References
[42] K.E. Neo, Y.C. Neo, S.W. Chien, G.K. Tan, A.L. Wilkins, W. Henderson, T.S.A. Hor,
Dalton Trans. 15 (2004) 2281.
[43] J. Fawcett, W. Henderson, R.D.W. Kemmitt, D.R. Russell, A. Upreti, J. Chem. Soc.,
Dalton Trans. (1996) 1897.
[44] H.E. Bryndza, W. Tam, Chem. Rev. 88 (1988) 1163.
[45] W. Henderson, B.K. Nicholson, A.G. Oliver, Polyhedron 13 (1994) 3099.
[46] A.T. Hutton, C.P. Morely, in: G. Wilkinson, R.D. Gillard, J.A. McCleverty (Eds.),
Comprehensive Coordination Chemistry 5, Pergamon Press, Oxford, 1987, p.
1157.
[1] F. Wöhler, Ann. Phys. Chem. 15 (1829) 619.
[2] G.S. Nichol, W. Clegg, M.J. Gutmann, D.M. Tooke, Acta Crystallogr., Sect. B 62
(2006) 798.
[3] T.F. Sysova, M.Z. Branzburg, M.Z. Gurevich, Z.A. Starikova, Zh. Strukt. Khim. 31
(1990) 90.
[4] R.E. Marsh, M. Kapon, S. Hu, F.H. Herbstein, Acta Crystallogr., Sect. B 58 (2002)
62.
[5] Z.-B. Lin, C.-Z. Chen, D.-S. Gao, X.-Y. Huang, D. Li, Jiegou Huaxue 14 (1995) 61.
[6] A.N. Chekhlov, Zh. Neorg. Khim. 51 (2006) 799.