Journal of the American Chemical Society
Article
and OG were purified by ion-exchange HPLC. The 5′ radiolabeling
was done using [γ-32P]-ATP and T4 polynucleotide kinase following
standard protocols. Gels were imaged using a Typhoon Trio scanner.
Substrate Preparation for Glycosylase Assays. The following
duplex sequence was used in all glycosylase assays: 5′-CGA TCA TGG
AGG CTA XCG CTC CCG TTA CAG-3′:3′-GCT AGT ACC TCC
GAT YGC GAG GGC AAT GTC-5′ where X = 1−4, G, OG, or FOG,
and Y = C. Glycosylase assays were conducted using this duplex with
the 5′-hydroxyl of the X-strand labeled with γ-32P-[ATP] (see the
Supporting Information for details). For glycosylase assays, an
additional nonlabeled X-containing strand was added to the labeled
strand to produce a 5% labeled X-oligonucleotide. The was was then
annealed with a 20% excess of the complement by heating to 90 °C for
10 min in annealing buffer (20 mM Tris−HCl, pH 7.6, 10 mM EDTA,
and 150 mM NaCl) and then allowed to cool slowly overnight.
Enzyme Purification and Glycosylase Assays. Recombinant
Fpg and hOGG1 were purified and active enzyme concentrations
determined as described previously.19,36 All enzyme concentrations
listed are active enzyme concentrations. Single-turnover experiments,
where [enzyme] > [DNA], were performed using the 30 base pair
duplex sequence (vide supra) to evaluate the glycosylase activity of
Fpg and hOGG1.19,36,45 For reactions under single-turnover
conditions in which the glycosylase reaction was too rapid to measure
manually, a Rapid Quench Flow instrument (RQF-3) from Kintek was
used. The enzyme was mixed with 20 nM final DNA duplex for time
points ranging from 0.2 s to 1 min and quenched with 0.5 M NaOH.
Denaturing polyacrylamide gel analysis provided separation of the 15-
nucleotide DNA fragment arising from the product and the 30-
nucleotide fragment originating from the substrate. Gels were imaged
using storage phosphor autoradiography and band intensities
quantitated to provide binding plots. For kinetic determination of
the Kd values for Fpg with the lesion and analog containing DNA the
substrate concentration was 5 pM of 100% label X-strand and the
[Fpg] was varied between 20 nM and 12.5 pM. Values for Kd were
ACKNOWLEDGMENTS
■
We thank the National Institutes of Health (CA090689 to
S.S.D. and GM072705 to E.T.K.) for support. A.K. acknowl-
edges the KIT Faculty Research Abroad Fellowship Program.
REFERENCES
■
(1) David, S. S.; O’Shea, V. L.; Kundu, S. Nature 2007, 447, 941.
(2) Taniguchi, Y.; Kool, E. T. J. Am. Chem. Soc. 2007, 129, 8836.
(3) Michaels, M. L.; Miller, J. H. J. Bacteriol. 1992, 174, 6321.
(4) Michaels, M. L.; Cruz, C.; Grollman, A. P.; Miller, J. H. Proc. Natl.
Acad. Sci. U. S. A. 1992, 89, 7022.
(5) David, S. S.; Williams, S. D. Chem. Rev. 1998, 98, 1221.
(6) Dzantiev, L.; Alekseyev, Y. O.; Morales, J. C.; Kool, E. T.;
Romano, L. J. Biochemistry 2001, 40, 3215.
(7) Francis, A. W.; Helquist, S. A.; Kool, E. T.; David, S. S. J. Am.
Chem. Soc. 2003, 125, 16235.
(8) Kim, T. W.; Delaney, J. C.; Essigmann, J. M.; Kool, E. T. Proc.
Natl. Acad. Sci. U. S. A. 2005, 102, 15803.
(9) Mizukami, S.; Kim, T. W.; Helquist, S. A.; Kool, E. T.
Biochemistry 2006, 45, 2772.
(10) Sintim, H. O.; Kool, E. T. J. Am. Chem. Soc. 2006, 128, 396.
(11) Krueger, A. T.; Kool, E. T. Curr. Opin. Chem. Biol. 2007, 11, 588.
(12) Sintim, H. O.; Kool, E. T. Angew. Chem., Int. Ed. Engl. 2006, 45,
1974.
(13) Fromme, J. C.; Verdine, G. L. J. Biol. Chem. 2003, 278, 51543.
(14) Tchou, J.; Bodepudi, V.; Shibutani, S.; Antoscheckin, I.; Miller,
J.; Grollman, A. P.; Johnson, F. P. J. Biol. Chem. 1994, 269, 15318.
(15) Bruner, S. D.; Norman, D. P.; Verdine, G. L. Nature 2000, 403,
859.
(16) Taniguchi, Y.; Kool, E. T. Nucleic Acids Symp. Ser. (Oxford)
2007, 51, 217.
(17) Bozilovic, J.; Bats, J. W.; Engels, J. W. Can. J. Chem. 2007, 85,
283.
determined by fitting the observed rate of glycosylase activity (kobs
)
versus log [Fpg] to the one-site binding isotherm (GraFit 5.0).
(18) Krishnamurthy, N.; Haraguchi, K.; Greenberg, M. M.; David, S.
Equilibrium Dissociation Constant (Kd) Measurements.
Electrophoretic mobility shift assays (EMSA) were performed to
determine the Kd values of hOGG1 for lesion and analog containing
DNA similarly to previously reported.7 Reaction volumes of 30 μL
contained duplex DNA concentrations estimated at 1 pM. The
reaction contained DNA 32P 5′-end-labeled X-strand, 20 mM Tris−
HCl pH 7.6, 10 mM NaCl, 1 mM EDTA, 1 mM DTT, 10% glycerol,
0.1 mg/mL BSA, and enzyme concentrations ranging from 2.3 μM to
3 pM.
S. Biochemistry 2008, 47, 1043.
(19) Leipold, M. D.; Workman, H.; Muller, J. G.; Burrows, C. J.;
David, S. S. Biochemistry 2003, 42, 11373.
(20) O’Brien, P. J. Chem. Rev. 2006, 106, 720.
(21) Kundu, S.; Brinkmeyer, M. K.; Livingston, A. L.; David, S. S.
DNA Repair (Amsterdam) 2009, 8, 1400.
(22) Cao, S. Ph.D. Dissertation, University of Utah, 2010.
(23) McCann, J. A.; Berti, P. J. J. Am. Chem. Soc. 2008, 130, 5789.
(24) Berti, P. J.; McCann, J. A. Chem. Rev. 2006, 106, 506.
(25) Sambrook, J.; Russell, D. W. Molecular Cloning, A Laboratory
Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: Plainview, NY,
2001; Vol. 1.
Acid-Catalyzed Depurination Assays. A modified Maxam−
Gilbert G+A sequencing reaction was performed as previously
described.7,25 Details are given in the Supporting Information.
(26) Lyons, D. M.; O’Brien, P. J. J. Am. Chem. Soc. 2009, 131, 17742.
(27) Krosky, D. J.; Song, F.; Stivers, J. T. Biochemistry 2005, 44, 5949.
(28) Krosky, D. J.; Schwarz, F. P.; Stivers, J. T. Biochemistry 2004, 43,
4188.
(29) Banerjee, A.; Verdine, G. L. Proc. Natl. Acad. Sci. U. S. A. 2006,
103, 15020.
(30) Banerjee, A.; Yang, W.; Karplus, M.; Verdine, G. L. Nature 2005,
434, 612.
(31) van der Kemp, P. A.; Charbonnier, J. B.; Audebert, M.; Boiteux,
S. Nucleic Acids Res. 2004, 32, 570.
(32) Radom, C. T.; Banerjee, A.; Verdine, G. L. J. Biol. Chem. 2006,
9182.
ASSOCIATED CONTENT
■
S
* Supporting Information
General synthetic methods and materials, synthetic methods for
synthesis of nonpolar analogs (2 and 4), mass spectrometry
characterization of oligonucleotides, enzyme purification and
assay methods, PAGE analysis of acid-catalyzed depurinations,
and NMR spectra. This information is available free of charge
(33) Norman, D. P.; Bruner, S. D.; Verdine, G. L. J. Am. Chem. Soc.
2001, 123, 359.
(34) Chu, A. M.; Fettinger, J. C.; David, S. S. Bioorg. Med. Chem. Lett.
2011, 21, 4969.
(35) Coste, F.; Ober, M.; Carell, T.; Boiteux, S.; Zelwer, C.; Castaing,
B. J. Biol. Chem. 2004, 279, 44074.
(36) Leipold, M. D.; Muller, J. G.; Burrows, C. J.; David, S. S.
Biochemistry 2000, 39, 14984.
AUTHOR INFORMATION
■
Corresponding Author
Author Contributions
§These authors contributed equally to the work, and should be
considered cofirst authors.
(37) Friedman, J. I.; Stivers, J. T. Biochemistry 2010, 49, 4957.
1660
dx.doi.org/10.1021/ja208510m | J. Am. Chem.Soc. 2012, 134, 1653−1661