88
S. Utsumi et al. / Journal of Fluorine Chemistry 152 (2013) 84–89
in polar solution (DMPU)
benzotrifluorides where trifluoromethyl group can be transformed
to difluoro(trimethylsilyl)methyl moiety (CF3 ! Me3SiCF2) which
is a building unit widely usable for introducing functionalized CF2
unit. The Mg–CuCl bimetallic system is applicable even in less
polar solvent such as ether-THF (9:1) so that Grignard reagent
formation by chemoselective dechlorination of 3-chloro(penta-
fluoroethyl)benzene predominates where electron transfer and
dechlorination would occur concertedly. The present protocol (Mg/
CuCl/TMS-Cl/DMI) would be widely usable for defluorination of
trifluoromethyl group and Grignard reagent formation.
TMS
CF2CF3
2-
CFCF3
TMS-Cl
Cl
Cl
-
F
diffusion
to
CF2CF3
bulk solution
Appendix A. Supplementary data
-
e
+2
Supplementary data associated with this article can be found, in
Cl
Cu
Mg2+
-
Mg
Mg
Mg Mg Mg
Cu
e
+
Cu
References
[1] (a) H. Amii, K. Uneyama, Chem. Rev. 109 (2009) 2119–2183;
(b) K. Uneyama, Organofluorine Chemistry, Blackwell Publishing, Oxford, 2006.
[2] (a) G.S. Silverman, P.E. Rakita, Handbook of Grignard Reagents, Dekker, New
York, 1996;
+
Mg2
Mg
Fig. 3. ET followed by defluorination in bulk solution.
(b) B.J. Wakefield, Organomagnesium Methods in Organic Synthesis, Academic
Press, London, 1995.
[3] (a) H. Amii, T. Kobayashi, Y. Hatamoto, K. Uneyama, Chem. Commun. (1999)
1323–1324;
in less polar solvent
Ether -THF
(b) K. Uneyama, G. Mizutani, Chem. Commun. (1999) 613–614;
(c) H. Amii, T. Kobayashi, H. Terasawa, K. Uneyama, Org. Lett. 3 (2001) 3103–
3105;
(d) T. Kobayashi, T. Nakagawa, H. Amii, K. Uneyama, Org. Lett. 5 (2003) 4297–
4300;
CF2CF3
CF2CF3
CF2CF3
(e) H. Amii, Y. Hatamoto, M. Seo, K. Uneyama, J. Org. Chem. 66 (2001) 7216–7218;
(f) G. Takikawa, T. Katagiri, K. Uneyama, J. Org. Chem. 70 (2005) 8811–8816;
(g) G. Takikawa, K. Toma, K. Uneyama, Tetrahedron Lett. 47 (2006) 6509–6511;
(h) Y. Nakamura, Y. Ozeki, K. Uneyama, J. Fluorine Chem. 129 (2008) 274–279;
(i) For a review, see K. Uneyama, H. Amii, J. Fluorine Chem. 114 (2002) 127–131.
[4] R.D. Rieke, S.E. Bales, J. Chem. Soc. Chem. Commun. (1973) 879–880.
[5] M.S. Kharasch, O. Reinmuth, Grignard Reactions of Nonmetallic Substances,
Prentice-Hall, New York, 1954, pp 12.
[6] H. Gilman, L.L. Heck, J. Am. Chem. Soc. 53 (1931) 377–378.
[7] C.D. Hurd, C.N. Webb, J. Am. Chem. Soc. 49 (1927) 546–559.
[8] H. Gilman, E.A. Zoellner, J. Am. Chem. Soc. 53 (1931) 1581–1583.
[9] N. Taniguchi, T. Onami, J. Org. Chem. 69 (2004) 915–920.
[10] B. Bogdanovic, M. Schwickardi, Angew. Chem. Int. Ed. 39 (2000) 4610–4612.
[11] (a) M.H. Gelb, J.P. Svaren, R.H. Abeles, Biochemistry 24 (1985) 1813–1817;
(b) M.H. Gelb, J. Am. Chem. Soc. 108 (1986) 3146–3147;
(c) H.L. Sham, Renin inhibitors with fluorine-containing amino acids, in: V.P.
Kukahr, V.A. Soloshonok (Eds.), Fluorine-containing Amino Acids, John Wiley &
Sons, Chichester, 1995, p. 333;
-
e
+
-
Cl
+
e
Cu
.
MgCl
+
MgCl
-
Mg2
Mg
e
Mg Mg Mg Mg
Cu
Mg
+
Cu
Mg
+
Mg2
Fig. 4. Dechlorination in less polar solution (ether–THF = 9:1).
(d) D. Schirlin, S. Baltzer, V. VanDorsselaer, F. Weber, C. Weill, J.M. Altenburger, B.
Neises, G. Flynn, J.M. Rimy, C. Tarnus, Bioorg. Med. Chem. Lett. 3 (1993) 253–258;
(e) J.T. Welch, Tetrahedron 43 (1987) 3123–3197;
(f) C. Doucet, I. Vergely, M. Reboud-Ravaux, J. Guilhem, R. Kobaiter, R. Joyeau, M.
Wakselman, Tetrahedron: Asymmetr. 8 (1997) 739–751;
(g) R. Joyeau, H. Molines, R. Labia, M. Wakselman, J. Med. Chem. 31 (1988) 370–
374.
F
F3C
F3C
-
F
OR
Mg
-F
TMS-Cl
OR
OR
-
e
Cu
O
O
TMSO
ClMg
5
[12] K. Uneyama, J. Fluorine Chem. 129 (2008) 550–576.
[13] (a) G.K.S. Prakash, A.K. Yudin, Chem. Rev. 97 (1997) 757–786;
(b) R.P. Singh, J.M. Shreeve, Tetrahedron 56 (2000) 7613–7632.
[14] (a) K. Uneyama, K. Maeda, T. Kato, T. Katagiri, Tetrahedron Lett. 39 (1998) 3741–
3744;
4
-
+
Mg2
e
Mg Mg Mg
Cu
Mg
+
Cu
(b) A.A. Stepanov, T.V. Minyaeva, B.I. Martynov, Tetrahedron Lett. 40 (1999)
2203–2204;
+
Mg2
(c) K. Uneyama, G. Mizutani, K. Maeda, T. Kato, J. Org. Chem. 64 (1999) 6717–
6723;
Mg
(d) M. Bordeau, P. Clavel, A. Barba, M. Bertande, C. Biran, N. Roques, Tetrahedron
Lett. 44 (2003) 3741–3744;
Fig. 5. Defluorination of alkyl trifluoroacetates in Mg/CuCl/LiCl/TMS-Cl/DMI system.
(e) From ClCF2CO2Et P. Clavel, C. Biran, M. Bordeau, N. Roques, S. Trevin, Tetra-
hedron Lett. 41 (2000) 8763–8767.
[15] (a) For reaction with imines leading to difluorolactam M. Bordeau, F. Frebault, M.
Gobet, J.-P. Picard, Eur. J. Org. Chem. (2006) 4147–4154;
(b) For cross-coupling with aryl iodides K. Fujikawa, Y. Fujioka, A. Kobayashi, H.
Amii, Org. Lett. 13 (2011) 5560–5563.
[16] (a) J. Wettergren, T. Ankner, G. Hilmersson, Chem. Commun. (2010) 7596–7597;
(b) A. Otaka, J. Watanabe, A. Yukimasa, Y. Sasaki, H. Watanabe, T. Kinoshita, S.
Oishi, H. Tamamura, N. Fujii, J. Org. Chem. 69 (2004) 1634–1645.
[17] H. Amii, T. Kobayashi, K. Uneyama, Synthesis (2000) 2001–2003.
[18] S. Utsumi, T. Katagiri, K. Uneyama, Tetrahedron 68 (2012) 580–583.
3. Conclusion
The Mg–Cu bimetallic system created in Mg/CuCl/TMS-Cl/DMI
system greatly accelerates electron transfer from metal Mg to the
substrates which are not reactive in the absence of CuCl. Reaction
rate enhancement by Mg–CuCl bimetallic system enables defluor-
inative silylation of both alkyl trifluoroacetates and substituted