I. Krummenacher, C.C. Cummins / Polyhedron 32 (2012) 10–13
13
Et2O); not observed B(C6F5)3 (ipso-C). 19F NMR (376.5 MHz, C6D6,
20 °C): d À164.4 (m, m-C6F5), À160.4 (t, J = 21 Hz, p-C6F5), À132.4
(d, J = 21 Hz, o-C6F5). 31P{1H} NMR (162 MHz, C6D6, 20 °C): d 514
thanks the Swiss National Science Foundation for a post-doctoral
research fellowship.
(br, m
1/2 = 570 Hz). IR (Et2O solution, KBr plates, cmÀ1): 2955 sh,
Appendix A. Supplementary data
2866 w, 1517 m, 1465 s, 1281 w, 1095 m, 979 m. Anal. Calc.: C,
56.19; H, 5.41; N, 3.22. Found: C, 55.89; H, 5.34; N, 3.27%.
CCDC 821010 and 821011 contain the supplementary crystallo-
graphic data for [Na(OEt2)][B(C6F5)3-1] and [B(C6F5)3-2]. These data
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223
336 033; or e-mail: deposit@ccdc.cam.ac.uk.
4.3. [(C6F5)3BONb(N[Np]Ar)3] ([B(C6F5)3-2])
A diethyl ether solution of B(C6F5)3 (75.4 mg, 0.147 mmol, 2 mL)
was added to a solution of ONb(N[Np]Ar)3 (100 mg, 0.147 mmol) in
diethyl ether (10 mL). The solution became dark yellow in color
and was allowed to stir for 30 min, at which point the solvent
was removed in vacuo. The residue was washed thoroughly with
several portions of n-pentane and dried under vacuum to yield
the product as bright yellow powder in 75% yield (132 mg,
0.11 mmol). If desired, the product can be recrystallized from
diethyl ether to give yellow plates. M. p.: ꢀ170 °C. 1H NMR
(400 MHz, C6D6, 20 °C): d 6.54 (s, 3H, p-Ar), 6.26 (s, 6H, o-Ar),
3.87 (s, 6H, N-CH2), 1.99 (s, 18H, Ar-CH3), 0.51 (s, 27H, tert-Bu).
References
[1] (a) G. Balázs, L.J. Gregoriades, M. Scheer, Organometallics 26 (2007) 3058;
(b) B.M. Cossairt, N.A. Piro, C.C. Cummins, Chem. Rev. 110 (2010) 4164.
[2] J.S. Figueroa, C.C. Cummins, J. Am. Chem. Soc. 126 (2004) 13916.
[3] A. Fürstner, P.W. Davies, Chem. Commun. (2005) 2307;
(b) R.R. Schrock, Chem. Rev. 102 (2002) 145.
[4] S.E. Creutz, I. Krummenacher, C.R. Clough, C.C. Cummins, Chem. Sci. (2011)
[5] J.S. Figueroa, C.C. Cummins, Angew. Chem., Int. Ed. 34 (2004) 984.
[6] N.A. Piro, C.C. Cummins, Inorg. Chem. 46 (2007) 7387.
[7] P. Pyykkö, M. Atsumi, Chem. Eur. J. 15 (2009) 12770.
[8] H. Plenio, Chem. Rev. 97 (1997) 3363.
[9] (a) NMR spectroscopic data on [Li][OCP] was remeasured: G. Becker, W.
Schwarz, N. Seidler, M. Westerhausen, Z. Anorg. Allg. Chem. 612 (1992) 72;
(b) G. Becker, K. Hübler, O. Mundt, N. Seidler, in: W.A. Herrmann, G. Brauer
(Eds.), Synthetic Methods of Organometallic and Inorganic Chemistry, vol. 3,
W.A. Herrmann, Thieme, Stuttgart, 1996, p. 16;
(c) G. Heckmann, G. Becker, H. Kraft, Magn. Reson. Chem. 37 (1999) 667.
[10] K. Hübler, P. Schwerdtfeger, Inorg. Chem. 38 (1999) 157.
[11] (a) F.F. Puschmann, D. Stein, D. Heift, C. Hendriksen, Z.A. Gal, H.-F.
Grützmacher, H. Grützmacher, Angew. Chem. Int. Ed. (2011) doi:10.1002/
11B NMR (128.4 MHz, C6D6, 20 °C): d À18 (br,
m
1/2 = 220 Hz). 13C
NMR (100.6 MHz, C6D6, 20 °C): d 150.0 (s, ipso-Ar), 149.0 (dm,
1
1JCF = 240 Hz, B(C6F5)3), 140.5 (dm, JCF = 242 Hz, B(C6F5)3), 138.6
1
(s, m-Ar), 137.8 (dm, JCF = 252 Hz, B(C6F5)3), 128.6 (s, p-Ar),
123.1 (s, o-Ar), 68.8 (s, N-CH2), 34.5 (s, C(CH3)3), 28.3 (s, C(CH3)3),
21.2 (s, Ar-CH3); not observed B(C6F5)3 (ipso-C). 19F NMR
(376.5 MHz, C6D6, 20 °C): d À164.0 (dd, J = 8.2, 24 Hz, m-C6F5),
À158.2 (m, p-C6F5), À133.0 (dd, J = 8.2, 24 Hz, o-C6F5). IR (Et2O
solution, KBr plates, cmÀ1): 2956 sh, 2867 w, 1644 w, 1603 m,
1514 m, 1463 s, 1280 w, 1188 w, 1096 m, 973 m. Anal. Calc.: C,
57.44; H, 5.07; N, 3.53. Found: C, 57.23; H, 4.97; N, 3.37.
(b) D. Stein, Ph.D. Dissertation, ETH Zürich, 2006.;
(c) F. Puschmann, Ph.D. Dissertation, ETH Zürich, 2011.
[12] M. Westerhausen, S. Schneiderbauer, H. Piotrowski, M. Suter, H. Nöth, J.
Organomet. Chem. 643–644 (2002) 189.
4.4. [Na(dme)2][OCP] (3)
[13] L. Weber, B. Torwiehe, G. Bassmann, H.-G. Stammler, B. Neumann,
Organometallics 15 (1996) 128.
[14] (a) Stable, isolable phosphorus analogues of carbamate species are known.
See, for examples: W.E. Buhro, M.H. Chisholm, K. Folting, J.C. Huffman, Inorg.
Chem. 26 (1987) 3087;
A
dark red solution of [Na(Et2O)][(C6F5)3BPNb(N[Np]Ar)3]
(400 mg, 0.31 mmol) in diethyl ether (30 mL) and DME (1 mL) was
treated via syringe with CO2 (7.0 ml, 0.31 mmol) at 0 °C. The solution
rapidly turned from red to bright yellow and was stirred for 1 h. The
solvent was evaporated and the residue washed with diethyl ether
and pentane in order to remove the niobium oxo compound. The
grayish residue was then dissolved in DME, the turbid solution fil-
tered, the filtrate concentrated, layered with n-pentane and cooled
to À30 °C. Subsequent recrystallization cycles yielded long colorless
needles. Yield: 57 mg (0.21 mmol, 70%). 1H NMR (400 MHz, thf-d8,
20 °C): d 3.43 (s, CH2), 3.27 (s, CH3). 13C NMR (100.6 MHz, thf-d8,
(b) W.E. Buhro, M.H. Chisholm, J.D. Martin, J.C. Huffman, K. Folting, W.E.
Streib, J. Am. Chem. Soc. 111 (1989) 8149;
(c) G.A. Vaughan, G.L. Hillhouse, A.L. Rheingold, Organometallics 8 (1989)
1760;
(d) K. Diemert, T. Hahn, W. Kuchen, J. Organomet. Chem. 476 (1994) 173;
T. Habereder, H. Nöth, R.T. Paine, Eur. J. Inorg. Chem. (2007) 4298;
(f) C.M. Mömming, E. Otten, G. Kehr, R. Fröhlich, S. Grimme, D.W. Stephan, G.
Erker, Angew. Chem., Int. Ed. 48 (2009) 6643;
(g) G. Ménard, D.W. Stephan, J. Am. Chem. Soc. 132 (2010) 1796.
[15] N.A. Piro, Ph.D. Dissertation, Massachusetts Institute of Technology, 2009,
[16] J.S. Figueroa, C.C. Cummins, J. Am. Chem. Soc. 125 (2003) 4020.
[17] A search of the Cambridge crystal structure database (CSD) revealed an
average O–B bond length of 1.51 Å for adducts formed between B(C6F5)3 and
early transition metal-oxo compounds. For a recent example, see: J. Sánchez-
Nieves, L.M. Frutos, P. Royo, O. Castaño, E. Herdtweck, M.E.G. Mosquera, Inorg.
Chem. 49 (2010) 10642.
1
20 °C): d 168.6 (d, JPC = 52 Hz, OCP), 72.9 (s, CH2), 59.1 (s, CH3).
31P{1H} NMR (162 MHz, C6D6, 20 °C): d À393 (s, OCP). IR (THF solu-
tion, KBr plates, cmÀ1): 1822 s, 1798 s, 1788 s, 1773 s (
w, 1296 sh, 1103 m, 976 m, 807 w, 740 sh, 518 m.
m(CP)), 1608
[18] A.N. Chernega, A.J. Graham, M.L.H. Green, J. Haggitt, J. Lloyd, C.P. Mehnert, N.
Metzler, J. Souter, J. Chem. Soc., Dalton Trans. (1997) 2293.
Acknowledgments
For support of this work we are grateful to the US National Sci-
ence Foundation (CHE-719157) and Thermphos International. I.K.