24
S. Chattopadhyay et al. / Inorganic Chemistry Communications 16 (2012) 21–24
References
[1] U. Schubert, Chem. Soc. Rev. 40 (2011) 575–582.
[2] M. Hong, Cryst. Growth Des. 7 (2007) 10–14.
[3] V. Balzani, A. Credi, M. Venturi, Molecular Devices and Machines, Wiley-VCH,
Weinheim, 2003.
[4] J.S. Miller, M. Drillon (Eds.), Magnetism: Molecules to Materials V, Wiley-VCH,
Weinheim, 2005.
[5] M. Petty, Molecular Electronics: From Principles to Practice, Wiley, Chichester, 2008.
[6] Y. Wei, Y. Yu, K. Wu, Cryst. Growth Des. 7 (2007) 2262–2264 and references therein.
[7] J.C. Tan, A.K. Cheetham, Chem. Soc. Rev. 40 (2011) 1059–1080.
[8] S.T. Hyde, B. Ninham, S. Anderson, Z. Blum, T. Landh, K. Larsson, S. Liddin, The Lan-
guage of Shape, Elsevier, Amsterdam, 1997.
[9] S.R. Seidel, P.J. Stang, Acc. Chem. Res. 35 (2002) 972–983.
[10] R. Herges, Chem. Rev. 106 (2006) 4820–4842.
[11] G.A. Jeffrey, An Introduction to Hydrogen Bonding, OUP, Oxford, 1997.
[12] M. Nishio, M. Hirota, Y. Umezawa, The CH/pi Interaction, Wiley-VCH, New York, 1998.
[13] K.-M. Dethlefs, P. Hobza, Chem. Rev. 100 (2000) 143–168.
[14] J. Lu, H.-T. Liu, X.-X. Zhang, D.-Q. Wang, M.-J. Niu, Z. Anorg. Allg. Chem. 636 (2010)
641–647.
[15] A.K. Ghosh, D. Ghoshal, M.G.B. Drew, G. Mostafa, N. Ray Chaudhuri, Struct. Chem.
17 (2006) 85–90.
[16] H.-B. Yang, K. Ghosh, Y. Zhao, B.H. Northrop, M.M. Lyndon, D.C. Muddiman, H.S.
White, P.J. Stang, J. Am. Chem. Soc. 130 (2008) 839–841.
[17] T.K. Karmakar, S.K. Chandra, J. Ribas, G. Mostafa, T.-H. Lu, B.K. Ghosh, Chem. Com-
mun. (2002) 2364–2365.
[18] T.K. Karmakar, B.K. Ghosh, A. Usman, H.-K. Fun, E. Riviere, T. Mallah, G. Aromi, S.K.
Chandra, Inorg. Chem. 44 (2005) 2391–2399.
[19] S. Satapathi, S. Chattopadhyay, K. Bhar, S. Das, R. Krishna Kumar, T.K. Maji, B.K.
Ghosh, Inorg. Chem. Commun. 14 (2011) 632–635.
[20] V. Alexander, Chem. Rev. 95 (1995) 273–342.
[21] A.M. Golub, H. Kohler, V.V. Skopenko (Eds.), Chemistry of Pseudohalides, Elsevier,
Amsterdam, 1986.
[22] K.K. Sarker, B.G. Chand, A.D. Jana, G. Mostafa, C. Sinha, Inorg. Chim. Acta 359
(2006) 695–700.
[23] R. Ghosh, A.D. Jana, S. Pal, G. Mostafa, H.-K. Fun, B.K. Ghosh, Cryst. Eng. Commun.
9 (2007) 353–357.
[24] A.D. Jana, S.C. Manna, G.M. Rosair, M.G.B. Drew, G. Mostafa, N.R. Chaudhuri, Cryst.
Growth Des. 7 (2007) 1365–1372.
[25] J.A. Kitchen, S. Brooker, Dalton Trans. 39 (2010) 3358–3360.
[26] R.J. Andersen, R.C. Targiani, R.D. Hancock, C.L. Stern, D.P. Goldberg, H.A. Godwin,
Inorg. Chem. 45 (2006) 6574–6576.
[27] J.-G. Mao, Z.-K. Wang, A. Clearfield, Inorg. Chem. 41 (2002) 6106–6111.
[28] B. Sui, W. Zhao, G. Ma, T. Okamura, J. Fan, Y.Z. Li, S.H. Tang, W.Y. Sun, N. Ueyama, J.
Mater. Chem. 14 (2004) 1631–1639.
Fig. 4. (a) The Emission spectra of enbzpy and 1 in DMF solutions at room temperature
and (b) Fluorescence spectra (λexc=273 nm) of ligand mixture (enbzpy, 0.197×10-6 M;
NH4NCS, 0.421×10-6 M) in DMF with increasing amounts of lead(II) ions. Inset:
[29] J.E.H. Buston, T.D.W. Claridge, S.J. Heyes, M.A. Leech, M.G. Moloney, K. Prout, M.
Stevenson, Dalton Trans. (2005) 3195–3203.
Fluorescence intensity values (λexc=273 nm,
added lead(II).
λem=~378 nm) vs concentration of
[30] Synthesis of [Pb(enbzpy)(μ1,3-NCS)(NCS)]n (1): Enbzpy (0.390 g, 1 mmol) in meth-
anol (15 cm3) was added slowly to a Pb(OAc)2.3H2O (0.379 g, 1 mmol) solution
in the same solvent (15 cm3). NH4NCS (0.153 g, 2 mmol) in methanol (15 cm3)
was added dropwise to this mixture. After filtration through a fine glass frit, the
supernatant light yellow solution was kept in air for slow evaporation. Light yel-
low crystals of 1 that deposited within a week, were collected by filtration and
dried in vacuo over silica gel indicator. Yield: 0.514 g (72%). Anal. Calc. for
architecture harnessing strong covalent and weak non-covalent inter-
actions towards crystal engineering to have directed functional be-
haviour with a heavy p-block metal ion.
C
28H22N6S2Pb (1): C, 47.1; H, 3.1; N, 11.8. Found: C, 47.3; H, 3.2; N, 11.6%. IR
(KBr, cm-1): ν(NCS) 2073, 2047, 2024; ν(C-S) 766, 749, 701; ν(C=N)
ν(C=C) 1621, 1584. UV–vis (λ, nm): 273.
+
Acknowledgements
[31] A. Castineirasa, R. Domingueza, L. Bresolinb, J. Bordinhaob, A.J. Bortoluzzib, M.
Financial support from the DST and CSIR, New Delhi, India is grate-
fully acknowledged. S. Chattopadhyay is grateful to the UGC and K.
Bhar, S. Choubey, S. Khan to the CSIR, New Delhi, India for fellowships.
The authors also acknowledge the use of DST-funded National Single
Crystal X-ray Diffraction Facility at the Department of Inorganic
Chemistry, IACS, Kolkata, India for crystallographic study.
Hornerb, Z. Naturforsch. 56b (2001) 517–520.
[32] B. Ding, Y.-Y. Liu, X.-J. Zhao, E.-C. Yang, G.-X. Du, X.G. Wang, Z. Anorg. Allg. Chem.
635 (2009) 1476–1480.
[33] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Com-
pounds, Part B, sixth ed. John Wiley & Sons, New Jersey, 2009.
[34] Crystal structure analyses: Diffraction data of the single crystals of 1 were collected
at 293 K on a Bruker SMART APEX II CCD area-detector diffractometer using
graphite monochromated Mo Kα radiation (0.71073 Å). The program SAINT
was used for integration of diffraction profiles and absorption correction was
made with SADABS program. The structure was solved by direct methods using
the SHELXTL, and refined by full-matrix least-squares methods based on F2
using SHELXL-97. Crystal data for 1: M.F.: C28H22N6S2Pb, F.W.: 713.83, Monoclinic,
P21/c, a = 12.8513(17) Å, b = 12.4666(16) Å, c = 17.686(3) Å, α = 90.00°, β =
93.486(4)°, γ = 90.00°, V = 2828.2(7) Å3, Z = 4, T = 120(2) K, Crystal size =
0.28×0.26×0.24 mm3, Dc= 1.676 g/cm3, F(000) = 1384, Reflections collected:
32088, final R indices [I>2σ(I)]: R = 0.0388, wR = 0.0975, R indices (all data):
R = 0.0536, wR = 0.1049, index ranges: h/k/l = −15,15/-14,14/-21,21; inde-
pendent reflections: 4979, (Rint = 0.049), θ ranges (°) = 1.59 to 25.00, data/
restraints/parameters = 4979/399/334, goodness-of-fit on F2 = 1.049, largest
peak and hole (eÅ-3) = 2.093 and −1.083, near heavy atoms, weighting scheme:
R = Σ||F0|−|Fc||/Σ|F0|, wR = [Σw(F02-Fc2)2/Σw(F02)2]1/2. calc. w = 1/[σ2 (Fo2)+(
0.0515P)2+7.6212P] where P = (F02+2Fc2)/3.
Appendix A. Supplementary data
Crystallographic data for the structural analysis (excluding struc-
ture factors) has been deposited with the Cambridge Crystallographic
Data Center (CCDC No. 832925 for 1). Copy of this information can be
obtained free of charge from The Director, CCDC, 12 Union Road, Cam-
bridge, CB2 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.
related to this article can be found online at doi:10.1016/j.inoche.
2011.11.019.
[35] S.C. Nyburg, C.H. Faerman, Acta Crystallogr. B41 (1985) 274–279.
[36] A.B.P. Lever, Inorganic Electronic Spectroscopy, second ed. Elsevier, New York, 1984.
[37] J. Garcia Sole, L.E. Bausa, D. Jaque, An Introduction to the Optical Spectroscopy of
Inorganic Solids, John Wiley & Sons, New York, 2005.
Appendix A. Supplementary data
Supplementary data to this article can be found online at doi:10.
1016/j.inoche.2011.11.019.
[38] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, third ed. Springer, USA,
2006.