Y. Hisamatsu, S. Aoki
FULL PAPER
7992–8003; g) S.-J. Yeh, M.-F. Wu, C.-T. Chen, Song, Y. Chi,
M.-H. Ho, S.-F. Hsu, C. H. Chen, Adv. Mater. 2005, 17, 285–
289; h) S.-C. Lo, C. P. Shipley, R. N. Bera, R. E. Hardling,
A. R. Cowley, P. L. Burn, I. D. W. Samuel, Chem. Mater. 2006,
18, 5119–5129; i) C.-H. Yang, Y.-M. Cheng, Y. Chi, C.-J. Hsu,
F.-C. Fang, K.-T. Wong, P.-T. Chou, C.-H. Chang, M.-H. Tsai,
C.-C. Wu, Angew. Chem. 2007, 119, 2470; Angew. Chem. Int.
Ed. 2007, 46, 2418–2421; j) K. Dedeian, J. Shi, E. Forsythe,
D. C. Morton, P. Y. Zavalij, Inorg. Chem. 2007, 46, 1603–1611;
k) E. Orselli, G. S. Kottas, A. E. Konradsson, P. Coppo, R.
Fröhlich, L. De Cola, A. van Dijken, M. Büchel, H. Börner,
Inorg. Chem. 2007, 46, 11082–11093; l) L.-L. Wu, C.-H. Yang,
I.-W. Sun, S.-Y. Chu, P.-C. Kao, H.-H. Huang, Organometallics
2007, 26, 2017–2023; m) C. S. Chin, M.-S. Eum, S. Y. Kim, C.
Kim, S. K. Kang, Eur. J. Inorg. Chem. 2007, 372–375; n) D.
Di Censo, S. Fantacci, F. De Angelis, C. Klein, N. Evans, K.
Kalyanasundaram, H. J. Bolink, M. Grätzel, M. K. Nazeerud-
din, Inorg. Chem. 2008, 47, 980–989; o) E. Orselli, R. Q. Albu-
querque, P. M. Fransen, R. Fröhlich, H. M. Janssen, L.
De Cola, J. Mater. Chem. 2008, 18, 4579–4590; p) Y.-H. Song,
Y.-C. Chiu, Y. Chi, Y.-M. Cheng, C.-H. Lai, P.-T. Chou, K.-T.
Wong, M.-H. Tsai, C.-C. Wu, Chem. Eur. J. 2008, 14, 5423–
5434; q) T. Sajoto, P. I. Djurovich, A. B. Tamayo, J. Oxgaard,
W. A. Goddard III, M. E. Thompson, J. Am. Chem. Soc. 2009,
131, 9813–9822; r) C.-H. Yang, J. Beltran, V. Lemaur, J. Cornil,
D. Hartmann, W. Sarfert, R. Fröhlich, C. Bizzarri, L. De Cola,
Inorg. Chem. 2010, 49, 9891–9901; s) C.-H. Lin, Y.-Y. Chang,
J.-Y. Hung, C.-Y. Lin, Y. Chi, M.-W. Chung, C.-L. Lin, P.-T.
Chou, G.-H. Lee, C.-H. Chang, W.-C. Lin, Angew. Chem. Int.
Ed. 2011, 50, 3182–3186; t) V. N. Kozhevnikov, K. Dahms,
M. R. Bryce, J. Org. Chem. 2011, 76, 5143–5148; u) L. Yang,
F. Okuda, K. Kobayashi, K. Nozaki, Y. Tanabe, Y. Ishii, M.
Haga, Inorg. Chem. 2008, 47, 7154–7165.
[20]
[21]
[22]
a) H. Suzuki, H. Abe, Tetrahedron Lett. 1995, 36, 6239–6242;
b) J. Lacour, D. Monchaud, G. Bernardinelli, F. Favarger, Org.
Lett. 2001, 3, 1407–1410.
Unfortunately, the introduction of a trifluoromethanesulfonyl
group into the IrIII complex by using sodium trifluoromethane-
sulfinate has not been successful thus far.
The emission spectrum of 11 in frozen CH2Cl2 at 77 K exhibits
a typical rigidochromic shift (see Figure S1 in the Supporting
Information and ref.[11c]). The emission maxima of 11 appear
at 459 nm, and additional intense peaks appear 491 nm.
We assume the low emission quantum yield of tris(iodo) deriv-
ative 15 is due to thermal deactivation through a nonradiative
pathway.
[23]
[24]
The luminescence lifetime of 15 is Ͻ12 ns at 298 K. Some Ir
complexes with very short lifetimes (τ on the order of nano-
seconds) have been reported, and it has demonstrated that their
emission originates from the triplet state (see ref.[12c,12u]). Emis-
sion maxima of 15 at 77 K in frozen CH2Cl2 (485 and 517 nm)
are almost identical to that at 298 K [491 and 517 (shoulder
peak) nm] (Figure S2), thereby suggesting its emission through
the triplet state.
5
–1
[25]
[26]
Complexes 6–12 and 14 have similar radiative (kr ≈ 10 s ) and
nonradiative (knr ≈ 105 s–1) rate constants (Table S1 in the Sup-
porting Information), which were calculated according to the
equation kr = Φ/τ and knr = (1 – Φ)/τ (E. M. Kober, J. V. Cas-
par, R. S. Lumpkin, T. J. Meyer, J. Phys. Chem. 1986, 90, 3722–
3734).
The reduction processes for the Ir complexes measured in this
manuscript are irreversible (Figure S4 in the Supporting Infor-
mation). Potential gaps (E1 [V] = E – Erped) between the first
ox
1/2
ox
oxidation (E ) and reduction (Erped) potential are 2.97 V for
1/2
6, 2.98 V for 15, 3.00 V for 9, and 3.1–3.3 V for 7, 8, and 10–
12 (Table S2). It is assumed that greater potential gaps of 7–12
and 15 than that of 6 result in a blueshift in the emission of 15
(4 nm), 9 (9 nm), and 7, 8, and 10–12 (approximately 30 nm).
C. Hansch, R. W. Taft, Chem. Rev. 1991, 91, 165–195.
[13]
[14]
a) R. J. Holmes, S. R. Forrest, T. Sajoto, A. Tamayo, P. I. Dju-
rovich, M. E. Thompson, J. Brooks, Y.-J. Tung, B. W. D’And-
rade, M. S. Weaver, R. C. Kwong, J. J. Brown, Appl. Phys. Lett.
2005, 87, 243507–1–3; b) V. Sivasubramaniam, F. Brodkorb, S.
Hanning, H. P. Loebl, V. van Elsbergen, H. Boerner, U. Scherf,
M. Kreyenschmidt, J. Fluorine Chem. 2009, 130, 640–649.
a) R. Ragni, E. A. Plummer, K. B. Brunner, J. W. Hofstraat, F.
Babudri, G. M. Farinola, F. Naso, L. De Cola, J. Mater. Chem.
2006, 16, 1161–1170; b) S.-C. Lo, R. N. Bera, R. E. Harding,
P. L. Burn, I. D. W. Samuel, Adv. Funct. Mater. 2008, 18, 3080–
3090; c) S. H. Kim, J. Jang, S. L. Lee, J. Y. Lee, Thin Solid Films
2008, 517, 722–726; d) S. J. Lee, K.-M. Park, K. Yang, Y. Kang,
Inorg. Chem. 2009, 48, 1030–1037.
[27]
[28]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T.
Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N.
Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.
Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morok-
uma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzew-
ski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K.
Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V.
Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B.
Stefanov; G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.
Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W.
Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, rev.
C.02, Gaussian, Inc., Wallingford CT, 2004.
[15]
[16]
K. Dedeian, P. I. Djurovich, F. O. Garces, G. Carlson, R. J.
Watts, Inorg. Chem. 1991, 30, 1685–1687.
a) P. M. Griffiths, F. Loiseau, F. Puntoriero, S. Serroni, S. Cam-
pagna, Chem. Commun. 2000, 2297–2298; b) K. J. Arm,
J. A. G. Williams, Chem. Commun. 2005, 230–232; c) K.-M.
Cheung, Q.-F. Zhang, K.-W. Chan, M. H. W. Lam, I. D. Wil-
liams, W.-H. Leung, J. Organomet. Chem. 2005, 690, 2913–
2921; d) M. Lepeltier, H. Le Bozec, V. Guerchais, Organometal-
lics 2005, 24, 6069–6072; e) V. L. Whittle, J. A. G. Williams,
Inorg. Chem. 2008, 47, 6596–6607; f) M. Cavazzini, S. Quici,
C. Scalera, F. Puntoriero, G. La Ganga, S. Campagna, Inorg.
Chem. 2009, 48, 8578–8592; g) T. Qin, J. Ding, L. Wang, M.
Baumgarten, G. Zhou, K. Müllen, J. Am. Chem. Soc. 2009,
131, 14329–14336; h) E. J. Wren, X. Wang, A. Farlow, S.-C.
Lo, P. L. Burn, P. Meredith, Org. Lett. 2010, 12, 4338–4340.
S. Aoki, Y. Matsuo, S. Ogura, H. Ohwada, Y. Hisamatsu, S.
Moromizato, M. Shiro, M. Kitamura, Inorg. Chem. 2011, 50,
806–818.
Although complex 8 was reported by Stössel et al. in a patent
(ref.[9b]), details of the photo and electrochemical properties of
8 were not reported.
[29]
[30]
P. J. H ay, J. Phys. Chem. A 2002, 106, 1634–1641.
Plot of the wavelength of emission maxima and HOMO–
LUMO energy gap (Eg) of 6–15 indicates a nearly linear rela-
tionship; see Figure S11 in the Supporting Information.
There are only a few examples of cross-coupling reactions that
lead to carbon–carbon bond formation (e.g., Suzuki–Miyaura
cross-coupling reactions) on halogenated ligands or triflate li-
gands bound to IrIII (see ref.[14b,16]). For examples of cross-
coupling reactions with other metal complexes, see: a) S. Cho-
dorowski-Kimmes, M. Beley, J.-P. Collins, J.-P. Sauvage, Tetra-
hedron Lett. 1996, 37, 2963–2966; b) M. Hissler, A. El-ghay-
oury, A. Harriman, R. Ziessel, Angew. Chem. 1998, 110, 1804;
Angew. Chem. Int. Ed. 1998, 37, 1717–1720; c) G. R. Pabst,
O. C. Pfüller, J. Sauer, Tetrahedron 1999, 55, 8045–8064; d) C. J.
Aspley, A. G. Williams, New J. Chem. 2001, 25, 1136–1147; e)
[31]
[17]
[18]
[19]
a) A. T. Khan, M. A. Ali, P. Goswami, L. H. Choudhury, J.
Org. Chem. 2006, 71, 8961–8963; b) D. S. Bhalerao, K. G. Aka-
manchi, Synlett 2007, 19, 2952–2956.
5368
www.eurjic.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2011, 5360–5369