Table 1. Optimization of the Reaction Conditionsa
Scheme 1. Umpolung Strategy via Bromonium Ion Intermedi-
ate Generated in Situ
catalyst
(equiv)
temp
time
(h)
yield
(%)b
entry
solvent
(°C)
1
2
3
4
5
6
7
8
9
;
DMF
80
12
12
12
12
12
8
n.r.
32
30
34
65
96
94
89c
93
Cu(OAc)2
Cu(OAc)2
Cu(OAc)2
CuBr
DMF
80
DCE
80
3(2H)-furanones from readily available and simple starting
materials is still required.
MeCN
MeCN
MeCN
MeCN
MeCN
MeCN
reflux
reflux
reflux
reflux
reflux
reflux
TsOH
The R-carbon to the carbonyl group is generally re-
garded as a nucleophilic center. The reversal of this prime
reactivity (umpolung7), that is, making the R-carbon of the
carbonyl electrophilic, would be of significant synthetic
utility and provide a complementary strategy to access
derivatives that are otherwise difficult to prepare conven-
tionally. In our research on the synthetic potential of β-
ketoamides toward various carbo- and heterocycles,8 we
have developed a convenient and economic route for
intramolecular CꢀO coupling of 1-acetylcyclopropane-
carboxamides via an umpolung strategy. The reactivity
of the R-carbon to the carbonyl group is converted from
originally nucelophilic to electrophilic via an in situ formed
halonium ion intermediate (Scheme 1).9 The sequential
TFA
8
HCO2H
PhCO2H
8
8
a Reactions were carried out with 1a (1.0 mmol), NBS (1.2 mmol),
and catalyst (5% loading amount for Lewis acid; 0.2 equiv for Brønsted
acid) in solvent (2.0 mL). b Isolated yield. c With trace amount of 2i (5%).
Table 2. Halonium-Induced Intramolecular CꢀO Bond For-
mation of 1-Acetylcyclopropanecarboxamides 2a
(8) (a) Cheng, X.; Liang, F.; Shi, F.; Zhang, L.; Liu, Q. Org. Lett.
2009, 11, 93. (b) Liang, F.; Cheng, X.; Liu, J.; Liu, Q. Chem. Commun.
2009, 45, 3636. (c) Wei, Y.; Lin, S. X.; Liu, J.; Ding, H.; Liang, F.; Zhao,
B. Org. Lett. 2010, 12, 4220. (d) Liu, J.; Lin, S.; Ding, H.; Wei, Y.; Liang,
F. Tetrahedron Lett. 2010, 51, 6349. (e) Wei, Y.; Lin, S.; Zhang, J.; Niu,
Z.; Fu, Q.; Liang, F. Chem. Commun. 2011, 47, 12394. (f) Liang, F.; Lin,
S.; Wei, Y. J. Am. Chem. Soc. 2011, 133, 1781.
(9) For recent application of halonium-producing reagent in organic
synthesis, see: (a) Sasaki, M.; Yudin, A. K. J. Am. Chem. Soc. 2003, 125,
14242. (b) Yeung, Y.-Y.; Gao, X.; Corey, E. J. J. Am. Chem. Soc. 2006,
128, 9644. (c) Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007, 445,
900. (d) Tanuwidjaja, J.; Ng, S.-S.; Jamison, T. F. J. Am. Chem. Soc.
2009, 131, 12084. (e) Snyder, S. A.; Treitler, D. S. Angew. Chem., Int. Ed.
2009, 48, 7899. (f) Zhou, L.; Tan, C. K.; Zhou, J.; Yeung, Y.-Y. J. Am.
Chem. Soc. 2010, 132, 10245. (g) Zhou, L.; Tan, C. K.; Jiang, X.; Chen,
F.; Yeung, Y.-Y. J. Am. Chem. Soc. 2010, 132, 15474. (h) Cai, Y.; Liu,
X.; Hui, Y.; Jiang, J.; Wang, W.; Chen, W.; Lin, L.; Feng, X. Angew.
Chem., Int. Ed. 2010, 49, 6160.
yield
entry
1
R1
R2
2
(%)b
1
2
3
4
5
6
1a
1b
1c
1d
1e
1f
Bn
H
2a
2b
2c
2d
2e
2f
93
90
94
92
0
2-Cl-C6H4CH2
4-MeC6H4CH2
BnCH2
H
H
H
Ph
H
Bn
Me
90
a Reactions were carried out with 1 (1.0 mmol), NBS (1.2 mmol), and
PhCO2H (0.2 mmol) in MeCN (2.0 mL). b Isolated yield.
(10) Examples of oxa-cyclization from amide oxygen atom: (a)
Reddy, D. N.; Prabhakaran, E. N. J. Org. Chem. 2011, 76, 680. (b)
Saito, T.; Ogawa, S.; Takei, N.; Kutsumura, N.; Otani, T. Org. Lett.
2011, 13, 1098. (c) Couto, I.; Tellitu, I.; Domınguez, E. J. Org. Chem.
2010, 75, 7954. (d) Jaganathan, A.; Garzan, A.; Whitehead, D. C.;
Staples, R. J.; Borhan, B. Angew. Chem., Int. Ed. 2011, 50, 2593.
(11) Reviews on cyclopropane chemistry: (a) Danishefsky, S. Acc.
Chem. Res. 1979, 12, 66. (b) Wong, H. N. C.; Hon, M. Y.; Tse, C. W.;
Yip, Y. C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165. (c) Reissig,
H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151. (d) Yu, M.; Pagenkopf,
B. L. Tetrahedron 2005, 61, 321. (e) Rubin, M.; Rubina, M.; Gevorgyan,
V. Chem. Rev. 2007, 107, 3117. (f) Carson, C. A.; Kerr, M. A. Chem. Soc.
Rev. 2009, 38, 3051. (g) De Simone, F.; Waser, J. Synthesis 2009, 3353.
(h) Shi, M.; Shao, L.-X.; Lu, J.-M.; Wei, Y.; Mizuno, K.; Maeda, H.
Chem. Rev. 2010, 110, 5883. For recent papers, see: (i) Xing, S.; Li, Y.;
Li, Z.; Liu, C.; Ren, J.; Wang, Z. Angew. Chem., Int. Ed. 2011, 50, 12605.
(j) Sathishkannan, G.; Srinivasan, K. Org. Lett. 2011, 13, 6002. (k)
Zhang, G.; Huang, X.; Li, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130,
1814. (l) Sparr, C.; Gilmour, R. Angew. Chem., Int. Ed. 2011, 50, 8391.
(m) Chung, S. W.; Plummer, M. S.; McAllister, L. A.; Oliver, R. M., III;
Abramite, J. A.; Shen, Y.; Sun, J.; Uccello, D. P.; Arcari, J. T.; Price,
L. M.; Montgomery, J. I. Org. Lett. 2011, 13, 5338.
amide oxa-cyclization10 and ring opening of cyclopropane11
represents a new strategy toward substituted 5-amino-
3(2H)-furanones.
Initially, the model reaction of 1-acetyl-N-benzylcyclopro-
panecarboxamide (1a) with NBS was examined under acidic
conditions (Table 1). No reaction occurred in the absence of
an acid catalyst (entry 1). The reaction with Lewis acid
catalysts like Cu(OAc)2 and CuBr (5% loading amount) at
80 °C gave an amide oxa-cyclized and cyclopropane ring-
opened product, 5-(benzylamino)-4-(2-bromoethyl)furan-
3(2H)-one (2a) in 32ꢀ65% yields (entries 2ꢀ5). The reaction
with Brønsted acids such as TsOH or TFA as the catalyst
exhibited higher efficiency, giving 2a in 94ꢀ96% yields
(entries 6 and 7). When formic acid was introduced as the
catalyst, product 2a was obtained in 89% yield, along with
Org. Lett., Vol. 14, No. 3, 2012
713