because these ions cannot be added to the solution without
complementary counterions, however, fine-tuning of the
energetics would be required to maintain the orthogonality
of the two operating modes. Herein, we report a three-station
[2]rotaxane in which 2,20-bipyridyl and carbamate units
serve as additional recognition stations that allow the bis-p-
xylyl-[26]crown-6 (BPX26C6)9 component to migrate away
from its originally occupied guanidinium station upon the
addition and removal of Zn2þ and PO43ꢀ ions, respectively.
To ensure solubility of the necessary salts, the desired
molecular switch would have to be operated in a quite
polar solvent (e.g., CH3CN) or a mixture with a less polar
one (e.g., CHCl3, CH2Cl2). Because the affinities of these
charged species to their binding sites in the [2]rotaxane
would be significantly weakened through high solvation in
polar solvents, the binding affinity of the macrocyclic
component to the original recognition station should not
be too strong under such conditions to ensure facile ion-
driven switching. Thus, we selected the guanidinium ion,
which is also solvated well in more polar solvents but
capable of threading through BPX26C6 in CH2Cl2,7g as a
recognition site for assembling the molecular switch. A
readily accessible monopyridinium ion would not be a
suitable secondary station for the anion-mediated switch-
ing process because its binding affinity to BPX26C6 is
higher than that of a guanidinium ion in CD3CN.7g There-
fore, we chose a carbamate unit as the second station, with
the expectation that [NꢀH O] hydrogen binding of its
3 3 3
NH proton to the oxygen atoms of BPX26C6 and its
weaker interaction with anions, relative to that of the
guanidinium ion, would allow it to host the macrocycle
in the presence of competing anions in solution. In a
previous study, we found that the interlocked BPX26C6
macrocyclic moiety and the 2,20-bipyridyl unit of the
thread component of a [2]rotaxane can interact orthogon-
ally to induce the recognition of specific metal ions,
thereby providing a 1H NMR spectroscopic probe for the
simultaneous identification of physiologically important
metal ions in a solution mixture.10 It seemed reasonable to
expect that the interlocked BPX26C6 component might
move to the 2,20-bipyridyl station from the guanidinium
station if we were to introduce suitable metal ions into the
solution.
Scheme 1
Scheme 2
(6) For recent examples, see: (a) Davidson, G. J. E.; Sharma, S.;
Loeb, S. J. Angew. Chem., Int. Ed. 2010, 49, 4938–4942. (b) Yen, M.-L.;
Chen, N.-C.; Lai, C.-C.; Liu, Y.-H.; Peng, S.-M.; Chiu, S.-H. Dalton
Trans. 2011, 40, 2163–2166. (c) Ishiwari, F.; Nakazono, K.; Koyama, Y.;
Takata, T. Chem. Commun. 2011, 47, 11739–11741. (d) Tokunaga, Y.;
Kawabata, M.; Matsubara, N. Org. Biomol. Chem. 2011, 9, 4948–4953.
(7) (a) Keaveney, C. M.; Leigh, D. A. Angew. Chem., Int. Ed. 2004,
43, 1222–1224. (b) Laursen, B. W.; Nygaard, S.; Jeppesen, J. O.;
Stoddart, J. F. Org. Lett. 2004, 6, 4167–4170. (c) Lin, C.-F.; Lai,
C.-C.; Liu, Y.-H.; Peng, S.-M.; Chiu, S.-H. Chem.;Eur. J. 2007, 13,
4350–4355. (d) Huang, Y.-L.; Hung, W.-C.; Lai, C.-C.; Liu, Y.-H.; Peng,
S.-M.; Chiu, S.-H. Angew. Chem., Int. Ed. 2007, 46, 6629–6633. (e)
Barrell, M. J.; Leigh, D. A.; Lusby, P. J.; Slawin, A. M. Z. Angew. Chem.,
Int. Ed. 2008, 47, 8036–8039. (f) Ng, K.-Y.; Felix, V.; Santos, S. M.;
Reesa, N. H.; Beer, P. D. Chem. Commun. 2008, 1281–1283. (g) Lin,
T.-C.; Lai, C.-C.; Chiu, S.-H. Org. Lett. 2009, 11, 613–616.
(8) For recent examples, see: (a) Zhu, K.; Li, S.; Wang, F.; Huang, F.
J. Org. Chem. 2009, 74, 1322–1328. (b) Kim, S. K.; Sessler, J. L.; Gross,
D. E.; Lee, C.-H.; Kim, J. S.; Lynch, V. M.; Delmau, L. H.; Hay, B. P.
J. Am. Chem. Soc. 2010, 132, 5827–5836. (c) Lascaux, A.; Le Gac, S.;
Wouters, J.; Luhmer, M.; Jabin, I. Org. Biomol. Chem. 2010, 8, 4607–
4616. (d) Perraud, O.; Robert, V.; Martinez, A.; Dutasta, J.-P. Chem.;
Eur. J. 2011, 17, 4177–4182.
(9) (a) Cheng, P.-N.; Lin, C.-F.; Liu, Y.-H.; Lai, C.-C.; Peng, S.-M;
Chiu, S.-H. Org. Lett. 2006, 8, 435–438. (b) Cheng, P.-N.; Huang, P.-Y.; Li,
W.-S.; Ueng, S.-H.; Hung, W.-C.; Liu, Y.-H.; Lai, C.-C.; Peng, S.-M.;
Chao, I.; Chiu, S.-H. J. Org. Chem. 2006, 71, 2373–2383. (c) Huang, Y.-L.;
Lin, C.-F.; Cheng, P.-N.; Lai, C.-C.; Liu, Y.-H.; Peng, S.-M.; Chiu, S.-H.
Tetrahedron Lett. 2008, 49, 1665–1669. (d) Chen, N.-C.; Lai, C.-C.; Liu,
Y.-H.; Peng, S.-M.; Chiu, S.-H. Chem.;Eur. J. 2008, 14, 2904–2908.
(10) Chen, N.-C.; Huang, P.-Y.; Lai, C.-C.; Liu, Y.-H.; Wang, Y.;
Peng, S.-M.; Chiu, S.-H. Chem. Commun. 2007, 4122–4124.
Org. Lett., Vol. 14, No. 4, 2012
1047