I. Shibata et al.
SHORT COMMUNICATION
[2] a) G. Cardillo, M. Orena, S. Sandri, C. Tomashini, Tetrahedron
1987, 43, 2505–2512; b) A. V. Rama Rao, T. G. Murali Dhar,
T. K. Chakraborty, M. K. Gurjar, Tetrahedron Lett. 1988, 29,
2069–2072; antibacterial drugs: c) M. R. Barbachyn, D. K.
Hutchinson, S. J. Brickner, M. H. Cynamon, J. O. Kilburn, S. P.
Klemens, S. E. Glickman, K. C. Grega, S. K. Hendges, D. S.
Toops, C. W. Ford, G. E. Zurenko, J. Med. Chem. 1996, 39,
680–685.
[7]
[8]
Tin-catalyzed cycloadditions with the use of epoxides has been
reported: I. Shibata, A. Baba, H. Iwasaki, H. Matsuda, J. Org.
Chem. 1986, 51, 2177–2184.
CCDC-822458 (for 2e), -840180 (for 4), and -822457 (for 9)
contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_r-
equest/cif.
[3] Dehydrated cyclic products were obtained under MW irradia-
tion at 120 °C, 90 min (200 W); a) C. González-Romero, P.
Bernal, F. Jiménez, M. del Carmen Cruz, A. Fuentes-Benites,
A. Benavides, R. Bautista, J. Tamariz, Pure Appl. Chem. 2007,
79, 181–191; b) B. M. Santoyo, C. González-Romero, O. Me-
rino, R. Martínez-Palou, A. Fuentes-Benites, H. A. Jiménez-
Vázquez, F. Delgado, J. Tamariz, Eur. J. Org. Chem. 2009,
2505–2518; c) O. Merino, B. M. Santoyo, L. E. Montiel, H. A.
Jiménez-Vázquez, L. G. Zepeda, J. Tamariz, Tetrahedron Lett.
2010, 51, 3738–3742.
[4] For examples of the synthetic uses of organotin compounds,
see: a) A. Baba, I. Shibata, M. Yasuda in Comprehensive Orga-
nometallic Chemistry III, vol. 9, ch. 8 (Eds.: R. H. Crabtree, D.
Michael, P. Mingos), Elsevier, Oxford, 2006, pp. 341–380; b)
M. Pereyre, P. J. Quintard, A. Rahm in Tin in Organic Synthe-
sis, Butterworth, London, 1987, pp. 261–285; c) A. G. Davies
in Organotin Chemistry, VCH, Weinheim, 1997, pp. 166–193.
[5] Sn–O and Sn–N bonds bear high nucleophilicity. In some
cases, their nucleophilicity is higher than that of the corre-
sponding free alcohols and amines: E. W. Abel, D. A. Armit-
age, D. B. Brady, Trans. Faraday Soc. 1966, 62, 3459–3462.
[6] a) A. G. Davies, T. N. Mitchell, W. R. Symes, J. Chem. Soc. C
1966, 1311–1315; b) A. Baba, H. Kishiki, I. Shibata, H. Mat-
suda, Organometallics 1985, 4, 1329–1333.
[9]
In the reaction of Scheme 2, product 5 was not formed during
isolation. Although the exact reason for the formation of 5 is
not clear, we suppose that, for example, by using an excess
amount of isocyanate, formation of the carbamate of the cy-
clized product would accelerate the elimination to give 5.
In the cyclization of allyldiphenyl-substituted tin adducts, we
have already reported that diphenyl substituents prefer to ori-
ent in a cis fashion. I. Shibata, R. Kojima, S. Tsunoi, T. No-
zaki, T. Watanabe, A. Ninomiya, M. Yasuda, A. Baba, Org.
Biomol. Chem. 2010, 8, 2009–2011.
[10]
[11] Tamariz et al. also propose a similar equilibrium: R. Martinez,
H. A. Jiménez-Vázquez, J. Tamariz, Tetrahedron 2000, 56,
3857–3866.
[12] For the reaction of diphenyl-substituted substrates 3, 6, and
8, the diastereoselectivity was not changed by the conditions.
Because the Ph group is bulkier than the Me group, the use of
3, 6, and 8 would not cause a reversible reaction in contrast to
the case of 1b.
[13] In the cycloaddition of epoxides, the addition occurred across
the C=S group of the isothiocyanate.[7]
Received: October 8, 2011
Published Online: November 8, 2011
7258
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 7255–7258