To gain more information on the role of NBS in
reaction, some control experiments were conducted in
the presence of iridium catalyst and hydrogen. The
hydrogenolysis of NBS performed smoothly using the
above chiral iridium complex as catalyst,11h giving the
succinimide and hydrogen bromide in full conversion
(Scheme 3). Next, 1-phenyl-3,4-dihydroiso-quinoline
hydrobromide4 was synthesized and subjected to the
iridium-catalyzed enantioselective hydrogenation under
the above standard condition B, providing the desired
product 2a in identical 96% ee with (R)-configuration,
which is accordant with the result of condition B.
Therefore, the hydrogenation with 150 mol% NBS
could be probably illustrated as the enantioselective
hydrogenation of 1-phenyl-3,4-dihydroisoquinoline
hydrobromide, which is considered to be formed in situ
with substrate and hydrogen bromide. As to the role of
sodium carbonate, so far it is hard to explain exactly
how it works. Neutralizing a part of excess acid to keep
a subtle pH condition may be very crucial for reactivity
and enantioselectivity of this process.
mechanism and application of this catalysis system with
dual stereo- control are ongoing in our group.
Acknowledgement
We are grateful for the financial support from Na-
tional Natural Science Foundation of China (21472188,
21690074), State Key Laboratory of Fine Chemicals
(KF1503) and Youth Innovation Promotion Association
of Chinese Academy of Sciences (2014167).
References
[1] (a) Burley, D. M.; Lenz, W. Lancet1962, 279, 271. (b) Stephans, T.
D. Teratology1988, 38, 229.
[2] Regulations on Food and Drug Administration of listed racemic
complianceregulatoryinformation/guidances/ucm122883.htm.
[3] Regulations on Food and Drug Administration of listed racemic
complianceregulatoryinformation/guidances/ucm134966.htm.
[4] For recent reviews on dual stereocontrol of asymmetric reactions: (a)
Bartók, M. Chem. Rev. 2010, 110, 1663. (b) Escorihuela, J.;
Burgueteb, M. I.; Luis, S. V. Chem. Soc. Rev. 2013, 42, 5595.
[5] Wang, Z.; Yang, Z.; Chen, D.; Liu, X.; Lin, L.; Feng, X. Angew.
Chem. Int. Ed. 2011, 50, 4928.
[6] (a) Zhou, J.; Ye, M.-C.; Huang, Z.-Z.; Tang, Y. J. Org. Chem.2004,
70, 1309. (b) Sohtome, Y.; Tanaka, S.; Takada, K.; Yamaguchi, T.;
Nagasawa, K.; Angew. Chem. Int. Ed.2010, 49, 9254. (c) Haddad, N.;
Qu, B.; Rodriguez,S.;van der Veen, L.; Reeves, D. C.; Gonnella, N.
C.; Lee, H.; Grinberg, N.; Ma, S.; Krishnamurthy, D.; Wunberg, T.;
Senanayake, C. H. Tetrahedron Lett.2011, 52, 3718. (d) Yu, H.; Xie,
F.; Ma, Z.; Liu, Y.; Zhang, W. Org. Biomol. Chem. 2012, 10, 5137.
(e) Burés, J.; Dingwall, P.; Armstrong, A.; Blackmond, D. G. Angew.
Chem. Int. Ed. 2014, 53, 8700. (f) Vijaya, P. K.; Murugesan, S.; Siva,
A. Tetrahedron Lett. 2015, 56, 5209.
[7] (a) Chan, V. S.; Chiu, M.; Bergman, R. G.; Toste, F. D. J. Am. Chem.
Soc.2009, 131, 6021. (b) Chaubey, N. R.; Ghosh, S. K. RSC
Adv.2011, 1, 393.
[8] (a) Arseniyadis, S.; Subhash, P. V.; Valleix, A.; Mathew, S. P.;
Blackmond, D. G.; Wagner, A.; Mioskowski, C. J. Am. Chem. Soc.
2005, 127, 6138. (b) Abermil, N.; Masson, G.; Zhu, J. Org. Lett.
2009, 11, 4648. (c) Blackmond, D. G.; Moran, A.; Hughes, M.;
Armstrong, A. J. Am. Chem. Soc. 2010, 132, 7598. (d) Moteki, S. A.;
Han, J.; Arimitsu, S.; Akakura, M.; Nakayama, K.; Maruoka,
K.Angew. Chem. Int. Ed.2012, 51, 1187.
[9] (a) Zeng, W.; Chen, G.-Y.; Zhou, Y.-G.; Li, Y.-X.J. Am. Chem.
Soc.2007, 129, 750. (b) Lutz, F.; Igarashi, T.; Kinoshita, T.; Asahina,
M.; Tsukiyama, K.; Kawasaki, T.; Soai, K. J. Am. Chem. Soc. 2008,
130, 2956. (c) Szőri, K.; Balázsik, K.; Cserényi, S.; Szőllősi, G.;
Bartók, M. Appl. Catal. A: Gen.2009, 362, 178. (d) Shibata, N.;
Okamoto, M.; Yamamoto, Y.; Sakaguchi, S. J. Org. Chem.2010, 75,
5707. (e) Szőllősi, G.; Busygin, I.; Hermán, B.; Leino, R.; Bucsi, I.;
Murzin, D. Y.; Fülöp, F.; Bartók, M. ACS Catal.2011, 1, 1316. (f)
Ding, Z.-Y.; Chen, F.; Qin, J.; He, Y.-M.; Fan, Q.-H. Angew. Chem.
Int. Ed.2012, 51, 5706. (g) Wang, D.; Cao, P.; Wang, B.; Jia, T.;
Lou,Y.; Wang, M.; Liao, J.Org. Lett.2015, 17, 2420. (h) Ordóñez,
M.; Hernández-Fernández, E.; Rojas-Cabrera, H.; Labastida-Galván,
V. Tetrahedron: Asymmetry2008, 19, 2767. (i) Ivšić, T.; Hameršak,
Z. Tetrahedron: Asymmetry2009, 20, 1095. (j) Tin, S.; Fanjulb, T.;
Clarke, M. L. Catal. Sci. Technol.2016, 6, 677.
Figure 2The two probable transition state of hydrogenation.
Combining with these results and the related
mechanistic research,16,19 a proposal on the stereo-
control mode for dual enantioselective hydrogenation of
dihydroisoquinolines is illustrated as follows. In the
presence of 10 mol% NBS, the hydrogenation proceeds
mainly through a four-membered cyclic transition state
TS1. In the presence of 150 mol% NBS, the
hydrogenation proceeds via a six-membered cyclic
transition state TS2 due tothe formation of salts
betweensubstrate and the hydrogen bromide in situ
generated from the hydrogenolysis of NBS (Figure 2).
Consequently,NBS was not only used to improve the
performance of catalyst by elevating the valence state of
the center metal, but also to activate the imine
substratethrough hydrogen bromide.
Conclusions
In summary, we have successfully developed an
effective dual stereocontrol in iridium-catalyzed asym-
metric hydrogenation of 1-substituted 3,4-dihydroiso-
quinolines. It provides a simple and convenient route to
two enantiomers of 1-substituted tetrahydroisoquino-
lines with up to 89% ee (S) and 98% ee (R) only using
(R)-BINAP, respectively. Dual activation role of
N-bromosuccinimideis proposed to be responsible for
the reversal of enantioselectivity under two different
hydrogenation conditions. Further investigations on
[10] For selected reviews: (a) Lu, S.-M.; Han, X.-W.; Zhou, Y.-G. Chin.
J. Org. Chem.2005, 25, 634. (b) Zhou, Y.-G. Acc. Chem. Res.2007,
40, 1357. (c) Church, T. L.; Andersson, P. G. Coord. Chem.
Rev.2008, 252, 513. (d) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem.
Rev. 2011, 111, 1713. (e) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.;
This article is protected by copyright. All rights reserved.