R. Bejot et al. / Bioorg. Med. Chem. 20 (2012) 324–329
329
oxidase. Compounds 1, 2 and 6 proved to have a medium electron
affinity, and compounds 3, 4 and 5 to have the lowest.
of concept hypoxic-selectivity assay, the fluorous-click method
could eventually allow for identification of membrane permeable
and oxygene-sensitive biomarker candidates for 18F-PET.
2-[18F]Fluoroethylazide, whose synthesis and purification were
recently reported using the fluorous technology,7 was used to ac-
cess 18F-labeled compounds for screening. A single batch of 2-
Acknowledgment
[
18F]fluoroethylazide could be readily synthesized and purified by
FSPE within a shielded hot cell, using a remotely controlled module
(GE Tracerlab FXFN). FSPE-purified aliquots of 2-[18F]fluoroethylaz-
ide could then be used for parallel conjugation with various prop-
argyl-functionalized nitroaromatics, within a shielded fume hood.
Further purification with an automated HPLC afforded the various
18F-labeled nitroaromatic-based molecules for evaluation of their
uptake within both hypoxic and normoxic cells (Fig. 1). 18FMISO
was also prepared and used to validate the cell uptake assay.
From the in vitro cell assays, it appears that three compounds are
worth mentioning. The substrates with a medium-to-high electron
affinity (2, 6 and 7) display a significant uptake difference between
hypoxic and normoxic cells, whereas those with a lower electron
affinity (3, 4 and 5) don’t display any hypoxic selectivity (Fig. 1). As
expected from the various well-validated 2-nitroimidazolyl hypoxia
biomarkers (e.g., 18FMISO, [18F]HX4), the 2-nitroimidazole deriva-
tive (2) has significant hypoxia selectivity. The new substrate 3-ami-
no-2-nitropyridine (6) exhibits hypoxia selectivity as well but the
uptake is much lower than the reference compound 18FMISO. This
lead compound could eventually be a candidate for optimization,
especially improving the transport through the cell membrane. 2-
Amino-5-nitrothiazole (7) had been shown to have radiosensitizing
properties due to its electron affinity.26 In this study, the 2-amino-5-
nitrothiazole derivative displays a high uptake within both hypoxic
and normoxic cells. But it turns out that most of the 5-nitrothiazole-
related radioactivitywithin cells isn’t irreversibly bound as exempli-
fied by the washout experiment (Fig. 2). Finally, the high electron
affinity of 7 may explain the low selectivity between hypoxic and
normoxic cells
This work was supported by the DIUS and Siemens Molecular
Imaging (Project No. TP/16636).
Supplementary data
Supplementary data (details of synthesis and characterization)
associated with this article can be found, in the online version, at
References and notes
1. Bejot, R.; Gouverneur, V. In Fluorine on Pharmaceutical and Medicinal Chemistry;
from biophysical aspects to clinical applications; Klaus Müller, Gouverneur, V.,
Eds.; Imperial College Press: London, 2011, pp. 329–376.
2. Kolb, H. C.; Walsh, J. C. Chimia 2010, 64, 29.
3. Kolb, H. C.; Sharpless, K. B. Drug Discovery Today 2003, 8, 1128.
4. Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249.
5. Curran, D. P. In Handbook of Fluorous Chemistry; Gladysz, J. A., Curran, D. P.,
Horváth, I. T., Eds.; Wiley-VCH Verlag GmbH & Co.: Weinheim, 2004; p 101.
6. Zhang, W.; Curran, D. P. Tetrahedron 2006, 62, 11837.
7. Bejot, R.; Fowler, T.; Carroll, L.; Boldon, S.; Moore, J. E.; Declerck, J.; Gouverneur,
V. Angew. Chem., Int. Ed. 2009, 48, 586.
8. Ruan, K.; Song, G.; Ouyang, G. J. Cell. Biochem. 2009, 107, 1053.
9. Denko, N. C. Nat. Rev. Cancer 2008, 8, 705.
10. Zha, Z.; Zhu, L.; Liu, Y.; Du, F.; Gan, H.; Qiao, J.; Kung, H. F. Nucl. Med. Biol. 2011,
38, 501.
11. Lee, S. T.; Scott, A. M. Semin. Nucl. Med. 2007, 37, 451.
12. Piert, M.; Machulla, H. J.; Picchio, M.; Reischl, G.; Ziegler, S.; Kumar, P.; Wester,
H. J.; Beck, R.; McEwan, A. J.; Wiebe, L. I.; Schwaiger, M. J. Nucl. Med. 2005, 46,
106.
13. Lehtiö, K.; Oikonen, V.; Nyman, S.; Grönroos, T.; Roivainen, A.; Eskola, O.; Minn,
H. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 101.
14. Barthel, H.; Wilson, H.; Collingridge, D. R.; Brown, G.; Osman, S.; Luthra, S. K.;
Brady, F.; Workman, P.; Price, P. M.; Aboagye, E. O. Br. J. Cancer 2004, 90, 2232.
15. van Loon, J.; Janssen, M.; Öllers, M.; Aerts, H.; Dubois, L.; Hochstenbag, M.;
Dingemans, A.-M.; Lalisang, R.; Brans, B.; Windhorst, B.; van Dongen, G.; Kolb,
H.; Zhang, J.; De Ruysscher, D.; Lambin, P. Eur. J. Nucl. Med. Mol. Imaging 2010,
37, 1663.
(P <0.001): if a substrate is reduced too rapidly, it may actually accu-
mulate and bind to cellular macromolecules irrespective of the oxy-
genation of the cell.
16. Bejot, R.; Kersemans, V.; Kelly, C.; Carroll, L.; King, R. C.; Gouverneur, V.;
Elizarov, A. M.; Ball, C.; Zhang, J.; Miraghaie, R.; Kolb, H. C.; Smart, S.; Hill, S.
Nucl. Med. Biol. 2010, 37, 565.
4. Conclusion
17. Prekeges, J. L.; Rasey, J. S.; Grunbaum, Z.; Krohn, K. H. Biochem. Pharmacol. 1991,
42, 2387.
18. Lim, J. L.; Berridge, M. S. Appl. Radiat. Isot. 1993, 44, 1085.
19. Namiki, A.; Brogi, E.; Kearney, M.; Kim, E. A.; Wu, T.; Couffinhal, T.; Varticovski,
L.; Isner, J. M. J. Biol. Chem. 1995, 270, 31189.
We have already demonstrated that multiple radiolabeled PET
probes can be obtained from a single radiolabeled precursor by
application of the same conjugation strategy: the radiolabeled 2-
[
18F]fluoroethylazide synthon has actually proven valuable in the
20. The effect of the specific activity was evaluated and was proven negligible in
the working range: the uptake of FMISO in hypoxic cells was 3.9% at 30 GBq/
catalyst-free traceless Staudinger ligation process, providing 18F-
radiolabeled molecules through the formation of an amide bond.30
In this paper, the same 2-[18F]fluoroethylazide synthon benefits
from the Cu(I)-mediated 1,3-dipolar cycloaddition (‘click’) for
radiolabeling multiple PET probes with high reaction specificity.
The strategy doesn’t require lengthy radiochemistry optimization
for every compound of interest nor protective groups, as usually
encountered in the challenging 18F-radiochemistry. Furthermore
purification of the final 18F-radiopharmaceutical is achieved remo-
tely using an HPLC, equipped with an autosampler and a fraction
collector. An important feature of the method is its operational
simplicity and potential to be automatized: the fluorous 18F-fluori-
nation and SPE purification of the 18F-labeled prosthetic group
combined with the ‘click’ reaction represent a straightforward
and very powerful approach to access novel radiolabeled com-
pounds for in vitro screening. And as exemplified with the proof
l
mol, 3.2% at 30 MBq/lmol and 1.1% at 0.3 MBq/lmol.
21. Jerabek, P. A.; Patrick, T. B.; Kilbourn, M. R.; Dischino, D. D.; Welch, M. J. Int. J.
Radiat. Appl. Instrum., Part A 1986, 37, 599.
22. Zhang, Y.; Chu, T.; Gao, X.; Liu, X.; Yang, Z.; Guo, Z.; Wang, X. Bioorg. Med. Chem.
Lett. 2006, 16, 1831.
23. Li, M. J.; Li, S. Z.; Zhuang, X. L.; Chen, A.; Zhang, H. Q.; Pang, X. C.; Hu, B. Yao Xue
Xue Bao 1992, 27, 662.
24. Mulcahy, R. T.; Wustrow, D. J.; Hark, R. R.; Kende, A. S. Radiat. Res. 1986, 105,
296.
25. Shibamoto, Y.; Nishimoto, S.; Mi, F.; Sasai, K.; Kagiya, T.; Abe, M. Int. J. Radiat.
Biol. 1987, 52, 347.
26. Rockwell, S.; Mroczkowski, Z.; Rupp, W. D. Radiat. Res. 1982, 90, 575.
27. Brown, J. M.; Workman, P. Radiat. Res. 1980, 82, 171.
28. Yamamoto, F.; Oka, H.; Antoku, S.; Ichiya, Y. I.; Masuda, K.; Maeda, M. Biol.
Pharm. Bull. 1999, 22, 590.
29. Clarke, E. D.; Goulding, K. H.; Wardman, P. Biochem. Pharmacol. 1982, 31, 3237.
30. Carroll, L.; Boldon, S.; Bejot, R.; Moore, J. E.; Declerck, J.; Gouverneur, V. Org.
Biomol. Chem. 2011, 9, 136.