4
Tetrahedron
5822; (c) Wang, X. L.; Oh, I. K.; Kim, J. B. Compos. Sci. Technol.
2009, 69, 2098-2101; (d) Hickner, M. A.; Ghassemi, H.; Kim, Y. S.;
Einsla, B. R.; McGrath, J. E. Chem. Rev. 2004, 104, 4587-4612; (e)
Nakahata, R.; Yusa, S. Langmuir 2019, 35,1690-1698; (f) Miyake, J.;
Taki, R.; Mochizuki, T. Shimizu, R.; Akiyama, R.; Uchida, M.;
Miyatake, K. Sci. Adv., 2017, 3, 35795-35800; (g) Zhang, X.; Dong,
T.; Pu, Y.; Higashihara, T.; Ueda, M.; Wang, L. J. Phys. Chem. C
2015, 119, 34, 19596-19606.
chloroform, benzene, acetone, anisole, tetrahydrofuran, N,N-
dimethylformamide, N-methyl-2-pyrrolidone and methanol at
room temperature at a high concentration (>500 mg/mL), which
makes 4a and 4i copolymerizable with a wider range of
hydrophobic monomers.
2.
3.
4.
(a) Mauritz, K. A.; Mountz, D. A.; Reuschle, D. A.; Blackwell, R. I.
Electrochim. Acta 2004, 50 ,565-569; (b) Rajan, G. S.; Mauritz, K. A.;
Stromeyer, S. L.; Kwee, T.; Mani, P.; Weston, J. L.; Nikles, D. E.;
Shamsuzzoha, M. J. Polym. Sci. Pol.Phys. 2005, 43, 1475-1485.
(a) Yao, H.; Zhang, Y.; Liu, Y.; You, K.; Song, N.; Liu, B.; Guan, S. J.
Membrane Sci. 2015, 480, 83-92; (b) Hu, Z.; Yin, Y.; Chen, S.;
Yamada, O.; Tanaka, K.; Kita, H.; Okamoto, K. J. Polym. Sci. Pol.
Chem. 2006, 44, 2862-2872.
(a) Meyer, W. H. Adv. Mater. 1998, 10, 439-448; (b) Dimitrov, I.;
Jankova, K.; Hvilsted, S. J. Fluorine Chem. 2013, 149, 30-35; (c)
Kreuer, K. D. J. Membrane Sci. 2001, 185, 29-39; (d) Mauritz, K. A.;
Moore, R.B. Chem. Rev. 2004, 104, 4535-4586; (e) Yoshimura, K.;
Iwasaki, K. Macromolecules 2009, 42, 9302-9306.
Figure 4. 1H NMR spectrum of 4a in CDCl3
5.
6.
(a) Feiring, A. E.; Wonchoba, E. R. J. Fluorine Chem. 2000, 105, 129-
135; (b) Eftekhari, A.; Saito, T.; Eur. Poly. J. 2017, 90, 245-272.
(a) Inzelt, G.; Pineri, M.; Schultze, J. W.; Vorotyntsev, M. A.
Electrochim. Acta 2000, 45, 2403-2421; (b) Kerres, J. A. J. Membrane
Sci. 2001, 185, 3-27.
3. Conclusion
As described above, we have investigated the addition
reaction of Grignard reagents to an inexpensive and
commercially available substrate 1 which led to the formation of
a series of fluoroalkylsulfonate 2 in high yield, including
monomer 2a for suitable for polystyrenic super acid. The
neighboring sulfonyl group may play a vital role in controlling
the reaction, in which its participation in the chelation of
magnesium salt prohibits the collapse of the tetrahedron
intermediate, avoiding the bisadduct and reduction side product
that is normally observed in the Grignard addition to esters with
fluorinated α-carbon. Most electron-rich Grignard regents give
good yield, while electron-poor Grignard regent does not work.
We also observed that the carbonyl moiety on the product exists
in an equilibrium with its hydrated form in aqueous solutions, the
extent of which is strongly dependent on the electron-donating
character of the substituent next to the carbonyl group.
Subsequently, converting the adducts to the acid form and then
neutralizing them with tetra-n-butylammonium hydroxide in
aqueous solution gave the corresponding tetra-n-butylammonium
salts 4 quantitatively, which shows good solubility in common
organic solvents. Currently, an effort is underway to study the
polymerization of the corresponding monomers and the
applications for advanced materials. These results will be
reported in due course.
7.
8.
(a) Toulgoat, F.; Langlois, B. R.; Médebielle, M.; Sanchez, J. Y. J.
Org. Chem. 2007, 72, 9046-9052; (b) J. T. Goldbach, X. Wan, D. A.
Mountz, WO-2012-018709.
(a) Bouix, M.; Gouzi, J.; Charleux, B.; Vairon, J. P.; Guinot, P.
Macromol. Rapid Comm. 1998, 19, 209-213; (b) Oikonomou, E. K.;
Pefkianakis, E. K.; Bokias, G.; Kallitsis, J. K. Eur. Polym. J. 2008, 44,
1857-1864; (c) Oikonomou, E. K.; Bethani, A.; Bokias, G.; Kallitsis, J.
K. Eur. Polym. J. 2011, 47, 752-761.
(a) Emmons, W. D.; Ferris, A. F. J. Am. Chem. Soc. 1953, 75, 2257-
2257; (b) Okamura, H.; Takatori, Y.; Tsunooka, M.; Shirai, M.
Polymer 2002, 43, 3155-3162; (c) Baek, K.Y. J. Polym. Sci. Pol.
Chem. 2008, 46, 5991-5998; (d) Mori, H.; Saito, Y.; Takahashi, E.;
Nakabayashi, K.; Onuma, A.; Morishima, M. Polymer 2012, 53, 3861-
3877; (e) Lienkamp, K.; Ruthard, C.; Lieser, G.; Berger, R.; Groehn,
F.; Wegner, G. Macromol. Chem. Phys. 2006, 207, 2050-2065.
9.
10. (a) Lundberg, R. D.; Thaler, W. A.; Turner, S. R. 1985, US4552939 A;
(b) Kertes, A. S.; Inorg. J. Nucl. Chem. 1965, 27, 209-217; (c)
Yoshizawa, M.; Ogihara, W.; Ohno, H. Polym. Advan. Technol. 2002,
13, 589-594; (d) Ohno, H.; Yoshizawa, M.; Ogihara, W. Electrochim.
Acta 2004, 50, 255-261; (e) Ricks-Laskoski, H. L.; Snow, A.W. J. Am.
Chem. Soc. 2006, 128, 12402-12403; (f) Liu, Y.; Pollock, K.L. ;
Cavicchi, K.A. Polymer 2009, 50, 6212-6217; (g) Pitia, E.; Shaw,
M.T.; Weiss, R. A. Polymer 2011, 52, 297-306; (h) Prescher, S.;
Polzer, F.; Yang, Y.; Siebenburger, M.; Ballauff, M.; Yuan, J. J. Am.
Chem. Soc. 2014, 136, 12-15.
11. McCullough, L.A.; Dufour, B.; Matyjaszewski, K. J. Polym. Sci. Pol.
Chem. 2009, 47, 5386-5396.
12. (a) Gao, L.; Johnston, D.; Lonergan, M.C. Macromolecules 2008, 41,
4071-4080; (b) Robinson, S. G.; Johnston, D. H.; Weber, C. D.;
Lonergan, M. C. Chem. Mater. 2009, 22, 241-246.
Acknowledgments
13. (a) Creary, X. J. Org. Chem. 1987, 52, 5026-5030; (b) Yamazaki, T.;
Terajima, T.; Taskasuka, T. K. Tetrahedron, 2008, 64, 2419-2424.
14. (a) Sayer, J. M. J. Org. Chem. 1975, 40, 2545-2547; (b) McDonald, R.
S.; Teo, K. C.; Stewart, R. J. Chem. Soc. Perk. T. 1983, 2, 297-299.
This work was supported by the National Science Foundation
of China (51603223).
References and notes
Click here to remove instruction text...
1.
(a) Dunwoody, D.; Leddy, J. J. Electrochem. Soc. Int. 2005, 14, 37-39;
(b) Geise, G. M.; Freeman, B. D.; Paul, D. R. Polymer 2010, 51, 5815-