Journal of Medicinal Chemistry
Article
(7) Wu, G.; Abraham, T.; Rapp, J.; Vastey, F.; Saad, N.; Balmir, E.
Daptomycin: evaluation of a high-dose treatment strategy. Int. J.
Antimicrob. Agents 2011, 38, 192−196.
antimicrobial foldamers with heterogeneous backbones. J. Am. Chem.
Soc. 2004, 126, 6848−6849.
(28) Raguse, T. L.; Porter, E. A.; Weisblum, B.; Gellman, S. H.
Structure−activity studies of 14-helical antimicrobial beta-peptides:
probing the relationship between conformational stability and
antimicrobial potency. J. Am. Chem. Soc. 2002, 124, 12774−12785.
(29) Claudon, P.; Violette, A.; Lamour, K.; Decossas, M.; Fournel, S.;
Heurtault, B.; Godet, J.; Mely, Y.; Jamart-Gregoire, B.; Averlant-Petit,
M. C.; Briand, J. P.; Duportail, G.; Monteil, H.; Guichard, G.
Consequences of isostructural main-chain modifications for the design
of antimicrobial foldamers: helical mimics of host-defense peptides
based on a heterogeneous amide/urea backbone. Angew. Chem., Int.
Ed. 2010, 49, 333−336.
(8) Beiras-Fernandez, A.; Vogt, F.; Sodian, R.; Weis, F. Daptomycin:
a novel lipopeptide antibiotic against Gram-positive pathogens. Infect.
Drug Resist. 2010, 3, 95−101.
(9) Kvitko, C. H.; Rigatto, M. H.; Moro, A. L.; Zavascki, A. P.
Polymyxin B versus other antimicrobials for the treatment of
pseudomonas aeruginosa bacteraemia. J. Antimicrob. Chemother.
2011, 66, 175−179.
(10) Makovitzki, A.; Baram, J.; Shai, Y. Antimicrobial lipopolypep-
tides composed of palmitoyl di- and tricationic peptides: in vitro and in
vivo activities, self-assembly to nanostructures, and a plausible mode of
action. Biochemistry 2008, 47, 10630−10636.
(11) Makovitzki, A.; Avrahami, D.; Shai, Y. Ultrashort antibacterial
and antifungal lipopeptides. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
15997−6002.
(12) Urakawa, H.; Yamada, K.; Komagoe, K.; Ando, S.; Oku, H.;
Katsu, T.; Matsuo, I. Structure−activity relationships of bacterial outer-
membrane permeabilizers based on polymyxin B heptapeptides. Bioorg.
Med. Chem. Lett. 2010, 20, 1771−1775.
(13) Tsubery, H.; Ofek, I.; Cohen, S.; Fridkin, M. N-Terminal
modifications of polymyxin B nonapeptide and their effect on
antibacterial activity. Peptides 2001, 22, 1675−1681.
(14) Morris, M. I.; Villmann, M. Echinocandins in the management
of invasive fungal infections, part 1. Am. J. Health-Syst. Pharm. 2006,
63, 1693−1703.
(15) Avrahami, D.; Shai, Y. Bestowing antifungal and antibacterial
activities by lipophilic acid conjugation to D,L-amino acid-containing
antimicrobial peptides: a plausible mode of action. Biochemistry 2003,
42, 14946−14956.
(16) Malina, A.; Shai, Y. Conjugation of fatty acids with different
lengths modulates the antibacterial and antifungal activity of a cationic
biologically inactive peptide. Biochem. J. 2005, 390, 695−702.
(17) Makovitzki, A.; Shai, Y. pH-dependent antifungal lipopeptides
and their plausible mode of action. Biochemistry 2005, 44, 9775−9884.
(18) Zhao, X. B.; Pan, F.; Xu, H.; Yaseen, M.; Shan, H. H.; Hauser, C.
A. E.; Zhang, S. G.; Lu, J. R. Molecular self-assembly and applications
of designer peptide amphiphiles. Chem. Soc. Rev. 2010, 39, 3480−3498.
(19) Chen, C.; Pan, F.; Zhang, S.; Hu, J.; Cao, M.; Wang, J.; Xu, H.;
Zhao, X.; Lu, J. R. Antibacterial activities of short designer peptides: a
link between propensity for nanostructuring and capacity for
membrane destabilization. Biomacromolecules 2010, 11, 402−411.
(20) Tew, G. N.; Scott, R. W.; Klein, M. L.; Degrado, W. F. De novo
design of antimicrobial polymers, foldamers, and small molecules:
from discovery to practical applications. Acc. Chem. Res. 2009, 43, 30−
39.
(30) Violette, A.; Fournel, S.; Lamour, K.; Chaloin, O.; Frisch, B.;
Briand, J. P.; Monteil, H.; Guichard, G. Mimicking helical antibacterial
peptides with nonpeptidic folding oligomers. Chem. Biol. 2006, 13,
531−538.
(31) Chongsiriwatana, N. P.; Miller, T. M.; Wetzler, M.; Vakulenko,
S.; Karlsson, A. J.; Palecek, S. P.; Mobashery, S.; Barron, A. E. Short
alkylated peptoid mimics of antimicrobial lipopeptides. Antimicrob.
Agents Chemother. 2011, 55, 417−420.
(32) Niu, Y.; Padhee, S.; Wu, H.; Bai, G.; Harrington, L.; Burda, W.
N.; Shaw, L. N.; Cao, C.; Cai, J. Identification of gamma-AApeptides
with potent and broad-spectrum antimicrobial activity. Chem.
Commun. (Cambridge, U. K.) 2011, 47, 12197−12199.
(33) Niu, Y.; Jones, A. J.; Wu, H.; Varani, G.; Cai, J. gamma-
AApeptides bind to RNA by mimicking RNA-binding proteins. Org.
Biomol. Chem. 2011, 9, 6604−6609.
(34) Niu, Y.; Hu, Y.; Li, X.; Chen, J.; Cai, J. [gamma]-AApeptides:
design, synthesis and evaluation. New J. Chem. 2011, 35, 542−545.
(35) Matsunaga, T.; Okochi, M.; Nakasono, S. Direct count of
bacteria using fluorescent dyes: application to assessment of
electrochemical disinfection. Anal. Chem. 1995, 67, 4487−4490.
(36) Patch, J. A.; Barron, A. E. Helical peptoid mimics of magainin-2
amide. J. Am. Chem. Soc. 2003, 125, 12092−12093.
(37) Karlsson, A. J.; Pomerantz, W. C.; Weisblum, B.; Gellman, S. H.;
Palecek, S. P. Antifungal activity from 14-helical β-peptides. J. Am.
Chem. Soc. 2006, 128, 12630−12631.
(38) Williams, S. C.; Hong, Y.; Danavall, D. C. A.; Howard-Jones, M.
H.; Gibson, D.; Frischer, M. E.; Verity, P. G. Distinguishing between
living and nonliving bacteria: evaluation of the vital stain propidium
iodide and its combined use with molecular probes in aquatic samples.
J. Microbiol. Methods 1998, 32, 225−236.
(39) Wu, M.; Maier, E.; Benz, R.; Hancock, R. E. W. Mechanism of
interaction of different classes of cationic antimicrobial peptides with
planar bilayers and with the cytoplasmic membrane of Escherichia coli.
Biochemistry 1999, 38, 7235−7242.
(40) Friedrich, C. L.; Moyles, D.; Beveridge, T. J.; Hancock, R. E.
Antibacterial action of structurally diverse cationic peptides on Gram-
positive bacteria. Antimicrob. Agents Chemother. 2000, 44, 2086−2092.
(21) Choi, S.; Isaacs, A.; Clements, D.; Liu, D.; Kim, H.; Scott, R. W.;
Winkler, J. D.; DeGrado, W. F. De novo design and in vivo activity of
conformationally restrained antimicrobial arylamide foldamers. Proc.
Natl. Acad. Sci. U.S.A. 2009, 106, 6968−6973.
(22) Chongsiriwatana, N. P.; Miller, T. M.; Wetzler, M.; Vakulenko,
S.; Karlsson, A. J.; Palacek, S. P.; Mobashery, S.; Barron, A. E. Short
alkylated peptoid mimics of antimicrobial lipopeptides. Antimicrob.
Agents Chemother. 2010, 55, 417−420.
(23) Liu, D.; DeGrado, W. F. De novo design, synthesis, and
characterization of antimicrobial beta-peptides. J. Am. Chem. Soc. 2001,
123, 7553−7559.
(24) Porter, E. A.; Wang, X.; Lee, H. S.; Weisblum, B.; Gellman, S. H.
Non-haemolytic beta-amino-acid oligomers. Nature 2000, 404, 565.
(25) Porter, E. A.; Weisblum, B.; Gellman, S. H. Mimicry of host-
defense peptides by unnatural oligomers: antimicrobial beta-peptides.
J. Am. Chem. Soc. 2002, 124, 7324−7330.
(26) Porter, E. A.; Weisblum, B.; Gellman, S. H. Use of parallel
synthesis to probe structure−activity relationships among 12-helical
beta-peptides: evidence of a limit on antimicrobial activity. J. Am.
Chem. Soc. 2005, 127, 11516−11529.
(27) Schmitt, M. A.; Weisblum, B.; Gellman, S. H. Unexpected
relationships between structure and function in alpha,beta-peptides:
4009
dx.doi.org/10.1021/jm300274p | J. Med. Chem. 2012, 55, 4003−4009