8 I. Perepichka, D. Perepichka, H. Meng and F. Wudl, Adv. Mater., 2005,
17, 2281–2305.
Conclusions
9 W.-Y. Wong, W.-C. Chow, K.-Y. Cheung, M.-K. Fung, A. B. D. sic´ and
W.-K. Chan, J. Organomet. Chem., 2009, 694, 2717–2726.
10 J. Nelson, Current Opinion in Solid State & Materials Science, 2002,
1–9.
11 J.-M. Nunzi, C. R. Phys., 2002, 3, 523–542.
12 C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, Adv. Funct. Mater.,
2001, 11, 15–26.
The primary influence of the heteroatom in the O2CC4H4E (E =
O, S, Se) ligands is seen to be on the energy of the lowest energy p*
orbital. This LUMO is primarily responsible for the appearance
1
of the MLCT transition and this moves to the red simply by
increasing the atomic number of the heteroatom. Based on the
observed electronic spectra (Fig. 5) we can reasonably anticipate
that related complexes having three or more selenophene rings
joined in the 2,2¢ positions would exhibit intense absorption well
into the NIR (800–1100 nm) when the metal is tungsten. Thus
oligomers having various numbers of C4H4E rings where E = O,
S and Se and M = Mo and W should be efficient at spectral
expansion to cover the solar emission spectrum. Relative to most
metal polypyridyl complexes these compounds have long lived
singlet 1MLCT states which should facilitate charge separation of
the exciton in a solar device.
13 O. Gidron, A. Dadvand, Y. Sheynin, M. Bendikov and D. F. Perepichka,
Chem. Commun., 2011, 47, 1976.
14 D. J. Crouch, P. J. Skabara, J. E. Lohr, J. J. W. McDouall, M. Heeney,
I. McCulloch, D. Sparrowe, M. Shkunov, S. J. Coles, P. N. Horton and
M. B. Hursthouse, Chem. Mater., 2005, 17, 6567–6578.
15 T. M. Clarke, A. M. Ballantyne, S. Tierney, M. Heeney, W. Duffy, I.
Mcculloch, J. Nelson and J. R. Durrant, J. Phys. Chem. C, 2010, 114,
8068–8075.
16 Z. Chen, H. Lemke, S. Albert-Seifried, M. Caironi, M. M. Nielsen,
M. Heeney, W. Zhang, I. Mcculloch and H. Sirringhaus, Adv. Mater.,
2010, 22, 2371–2375.
17 A. Maurano, C. G. Shuttle, R. Hamilton, A. M. Ballantyne, J. Nelson,
W. Zhang, M. Heeney and J. R. Durrant, J Phys Chem C, 2011, 1–11.
18 J. M. Lim, Z. S. Yoon, J.-Y. Shin, K. S. Kim, M.-C. Yoon and D. Kim,
Chem. Commun., 2009, 261.
19 R. G. Parr and W. Yang, Density-functional Theory of Atoms and
Molecules, Oxford University Press, New York, 1989.
20 M. Frisch, G. Trucks, H. Schlegel , G. Scuseria, M. Robb, J. Cheeseman,
J. Montgomery, T. Vreven, K. Kudin, J. Burant, J. Millam, S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M.
Klene, X. Li, J. Knox, H. Hratchian, J. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R.
Cammi, C. Pomelli, J. Ochterski, P. Ayala, K. Morokuma, G. Voth,
P. Salvador, J. Dannenberg, V. Zakrzewski, S. Dapprich, A. Daniels,
M. Strain, O. Farkas, D. Malick, A. Rabuck, K. Raghavachari, J.
Foresman, J. Ortiz, Q. Cui, A. Baboul, S. Clifford, J. Cioslowski, B.
Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Martin, D.
Fox, T. Keith, A. Laham, C. Peng, A. Nanayakkara, M. Challacombe,
P. Gill, B. Johnson, W. Chen, M. Wong, C. Gonzalez and J. Pople,
Gaussian03, Gaussian, Inc, Wallingford, CT, 2003.
21 A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38, 3098.
22 B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 1989,
157, 200–206.
23 R. Dennington II, T. Keith, J. Millam, K. Eppinnett, W. L. Hovell and
R. Gilliland, GaussView, Semichem Inc, Shawnee Mission, KS, 2003.
24 G. T. Burdzinski, J. Hackett, J. Wang, T. L. Gustafson, C. M. Hadad
and M. Platz, J Am Chem Soc, 2006, 128, 13402–13411.
25 M. J. Byrnes, M. H. Chisholm, J. C. Gallucci, Y. Liu, R. Ramnauth and
C. Turro, J Am Chem Soc, 2005, 127, 17343–17352.
Finally, we note that the influence of the heavy metal W vs.
Mo and E = Se vs. S vs. O has a slight influence on the lifetimes
of the singlet excited states though the trend of known spin–orbit
coupling W > Mo and Se > S > O can be detected. However, what
is most apparent is that the 3MLCT states for tungsten are much
3
shorter than the MoModd* states which are long-lived. This is
true even when the 3MLCT state for tungsten is of higher energy
than the 3MoModd* state. In terms of applications such as solar
cells, this demonstrates that substitution of selenium for sulfur is
able to red shift the absorption of a complex to cover more of the
solar spectrum, however the effect on singlet and triplet lifetimes
must also be considered.
Acknowledgements
This material is based upon work supported by the National
Science Foundation under Grant No. 0957191. We also thank
The Ohio State University Institute for Materials Research
and the Ohio State Third Frontier Photovoltaic Initiative for
Commercialization for support and the Ohio Super Computing
Center for Computational Resources.
26 B. G. Alberding, M. H. Chisholm, Y.-H. Chou, J. C. Gallucci, Y. Ghosh,
T. L. Gustafson, N. Patmore, C. R. Reed and C. Turro, Inorg. Chem.,
2009, 48, 4394–9.
27 H. Gschwend and H. Rodriguez, Organic Reactions, 2005, vol. 26.
28 Z. Otwinowski and W. Minor, Methods in Enzymology, Vol. 276:
Macromolecular Crystallography, Part A, Academic Press, 1997.
29 G. M. Sheldrick, Acta Crystallographica, 2008, A64, 112–122.
30 L. J. Farrugia, Journal of Applied Crystallography, 1999, 32, 837–838.
31 International Tables for Crystallography, Volume C, Kluwer Academic
Publishers, Dordrecht, 1992.
32 W. Kohn and L. Sham, Phys Rev, 1965, 137, 1697–1705.
33 M. H. Chisholm, P. Chou, Y.-H. Chou, Y. Ghosh, T. L. Gustafson and
M. Ho, Inorg. Chem., 2008, 47, 3415–25.
34 B. S. Brunschwig, C. Creutz and N. Sutin, Chem. Soc. Rev., 2002, 31,
168–184.
Notes and References
1 M. H. Chisholm, Dalton Trans., 2003, 3821–3828.
2 M. H. Chisholm, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 2563–
2570.
3 M. H. Chisholm, A. J. Epstein, J. C. Gallucci, F. Feil and W. Pirkle,
Angew. Chem., Int. Ed., 2005, 44, 6537–6540.
4 G. T. Burdzinski, M. H. Chisholm, P.-T. Chou, Y.-H. Chou, F. Feil, J. C.
Gallucci, Y. Ghosh, T. L. Gustafson, M.-L. Ho, Y. Liu, R. Ramnauth
and C. Turro, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 15247–15252.
5 B. G. Alberding, M. H. Chisholm, Y.-H. Chou, Y. Ghosh, T. L.
Gustafson, Y. Liu and C. Turro, Inorg. Chem., 2009, 48, 11187–11195.
6 M. J. Byrnes, M. H. Chisholm, R. J. H. Clark, J. C. Gallucci, C. M.
Hadad and N. J. Patmore, Inorg. Chem., 2004, 43, 6334–6344.
7 M. Barybin, M. H. Chisholm, N. Patmore, R. Robinson and N. Singh,
Chem. Commun., 2007, 3652–3654.
35 B. J. Lear and M. H. Chisholm, Inorg. Chem., 2009, 48, 10954–10971.
This journal is
The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 2257–2263 | 2263
©