22
A.A. Fahem / Spectrochimica Acta Part A 88 (2012) 10–22
References
[1] D.A. Kose, B.Z. Karan, C. Unaleroglu, O. Sahin, O. Buyukgungor, J. Coord. Chem.
59 (2006) 2125.
[2] M. Galanski, V.B. Arion, M.A. Jakupec, B.K. Keppler, Curr. Pharm. Des. 9 (2003)
2078.
[3] A.A. Chernyavskaya, N.V. Loginova, G.I. Polozov, O.I. Shadyro, A.A. Sheryakov,
E.V. Bondarenko, Pharm. Chem. J. 40 (2006) 413.
[4] K. Singh, M.S. Barwa, P. Tyagi, Eur. J. Med. Chem. 41 (2006) 147.
[5] M.A. Phaniband, S.D. Dhumwad, Transit. Met. Chem. 32 (2007) 1117.
[6] L.C. YU, L. Lai, R. Xia, S.L. Liu, J. Coord. Chem. 62 (2009) 1313.
[7] J. Bassett, R.C. Denney, G.H. Jeffery, J. Mendham, Vogel’s Textbook of Quantita-
tive Inorganic Analysis, 4th edn, Longmans, London, 1978.
[8] A.A. El-Asmy, O.A. El-Gammal, H.A. Radwan, Spectrochim. Acta A 76 (2010) 496.
[9] A.A. Ibrahim, A.M. Adel, Z.H. Abd El-Wahab, M.T. Al-Shemy, Carbohydr. Polym.
83 (2011) 94.
[10] M. Shebl, S.M.E. Khalil, F.S. Al-Gohani, J. Mol. Struct. 980 (2010) 78.
[11] M.X. Li, J. Zhou, H. Zhao, C.L. Chen, J.P. Wang, J. Coord. Chem. 62 (2009) 1423.
[12] N.A. Oztas, G. Yenisehirli, N. Ancın, S.G. Oztas, Y. Ozcan, S. Ide, Spectrochim.
Acta A 72 (2009) 929.
Fig. 8. Antibacterial activity of all compounds under study.
[13] K. Uzarevic, M. Rubcic, V. Stilinovic, B. Kaitner, M. Cindric, J. Mol. Struct. 984
(2010) 232.
[14] A.A.A. Emara, O.M.I. Adly, Transit. Met. Chem. 32 (2007) 889.
[15] S.P. Jose, S. Mohan, Spectrochim. Acta A 64 (2006) 205.
[16] M.S. El-Shahawi, A.F. Shoair, Spectrochim. Acta A 60 (2004) 121.
[17] K.V. Sharma, V. Sharma, U.N. Tripathi, J. Coord. Chem. 62 (2009) 676.
[18] Z.H. Abd El-Wahab, J. Coord. Chem. 61 (2008) 1696.
[19] S.K. Shivakumar, P.V. Reddy, M.B. Halli, J. Coord. Chem. 60 (2007) 243.
[20] A. Kilic, E. Tas, Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 37 (2007) 583.
[21] K.M. Ibrahim, I.M. Gabr, R.R. Zaky, J. Coord. Chem. 62 (2009) 1100.
[22] S.A. Patil, S.N. Unki, A.D. Kulkarni, V.H. Naik, P.S. Badami, J. Mol. Struct. 985
(2011) 330.
[23] G.S. Kurdekar, S.M. Puttanagouda, N.V. Kulkarni, S. Budagumpi, V.K. Revankar,
Med. Chem. Res. 20 (2011) 421.
[24] R. Gup, B. Kırkan, Spectrochim. Acta A 62 (2005) 1188.
[25] T. Ghosh, C. Bandyopadhyay, S. Bhattacharya, G. Mukherjee, Transit. Met. Chem.
29 (2004) 444.
Fig. 9. Antifungal activity of all compounds under study.
[26] M. Shebl, S.M.E. Khalil, S.A. Ahmed, H.A.A. Medien, J. Mol. Struct. 980 (2010) 39.
[27] F.A. Adekunle, J.A.O. Woods, O.O.E. Onawumi, O.A. Odunola, Synth. React. Inorg.
Met.-Org. Nano-Met. Chem. 40 (2010) 430.
[28] A.A. Osowole, G.A. Kolawole, R. Kempe, O.E. Fagade, Synth. React. Inorg. Met.-
Org. Nano-Met. Chem. 39 (2009) 165.
[29] O.M.I. Adly, Spectrochim. Acta A 79 (2011) 1295.
[30] J.A.O. Woods, H.O. Omoregie, N. Retta, F. Capitelli, I.D. Silva, Synth. React. Inorg.
Met.-Org. Nano-Met. Chem. 39 (2009) 704.
[31] A.A.A. Abou-Hussein, J. Sulfur Chem. 31 (2010) 427.
[32] H.L. Singh, Spectrochim. Acta A 76 (2010) 253.
[33] A.D. Khalaji, S.M. Rad, G. Grivani, D. Das, J. Therm. Anal. Calorim. 103 (2011)
747.
[34] M. Shebl, H.S. Seleem, B.A. El-Shetary, Spectrochim. Acta A 75 (2010) 428.
[35] R.N. Patel, A. Singh, K.K. Shukla, D.K. Patel, V.P. Sondhiy, Transit. Met. Chem. 36
(2011) 179.
[36] M. Tatucu, A. Kriza, C. Maxim, N. Stanica, J. Coord. Chem. 62 (2009) 1067.
[37] A.Z. El-Sonbati, A.A.M. Belal, S.I. El-Wakeel, M.A. Hussien, Spectrochim. Acta A
60 (2004) 965.
microorganism, thus destroying them more forcefully
[51].
•
toward the different organisms are found to follow the order
UO2(II) complexes > Ni(II) complexes which may correlate to the
increase in the coordination number from six in Ni(II) complexes
to eight in UO2(II) [52].
The % activity index data indicate that the ligands show lower
activity than their metal complexes and [UO2(L2)(NO3)2] shows
the highest activity against all tested microbes, in addition, the
activity follows the following order:
•
A. fumigatus (93%) > F. oxysporum (85%) > P. fluorescens (81%) > S.
pyogenes (71%) = P. phaseolicola (71%) > S. aureus (62%).
[38] A. Beghidja, R. Welter, P. Rabu, G. Rogez, Inorg. Chim. Acta 360 (2007) 1111.
[39] H.M. Parekh, M.N. Patel, Russ. J. Coord. Chem. 32 (2006) 431.
[40] M.M. Mashaly, A.T. Ramadan, B.A. El-Shetary, A.K. Dawoud, Synth. React. Inorg.
Met.-Org. Nano-Met. Chem. 34 (2004) 1319.
4. Conclusions
[41] M.M.H. Khalil, M.M. Mashaly, Chin. J. Chem. 26 (2008) 1669.
[42] M. Arshad, A.H. Qureshi, S. Rehman, K. Masud, J. Therm. Anal. Calorim. 89 (2007)
561.
The complexes of Ni(II) and UO2(II) with two Schiff base ligands,
have been synthesized and their structural situation elucidated by
various instrumental techniques. The coordination of the two lig-
ands to the metal ions takes place through N4 and N2O2 donor
atoms. The remaining coordination positions being occupied by
two chloride ions as well as two nitrate ions to achieve an octa-
hedral and dodecahedral geometries around Ni(II) and UO2(II),
respectively. The bioactivity of these synthesized compounds is
a complex phenomenon related to different factors as described
above and the metal complexes are more active than the free lig-
ands. These active compounds may serve as a starting point for
further studies on metal complexes acting as drugs.
[43] B.P. Baranwal, T. Fatma, A. Varma, A.K. Singh, Spectrochim. Acta A 75 (2010)
1177.
[44] B.P. Baranwal, T. Fatma, A. Varma, J. Mol. Struct. 920 (2009) 472.
[45] V.P. Singh, A. Katiyar, Pestic. Biochem. Physiol. 92 (2008) 8.
[46] V.P. Singh, P. Gupta, N. Lal, Russ. J. Coord. Chem. 34 (2008) 270.
[47] S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumary, K. Srinivasanc,
Spectrochim. Acta A 79 (2011) 594.
[48] V.P. Singh, P. Gupta, Pharm. Chem. J. 42 (2008) 196.
[49] B.K. Singh, U.K. Jetley, R.K. Sharma, B.S. Garg, Spectrochim. Acta A 68 (2007) 63.
[50] P.B. Pansuriya, M.N. Patel, J. Enzyme Inhib. Med. Chem. 23 (2008) 108.
[51] G. Budige, M.R. Puchakayala, S.R. Kongara, A. Hu, R. Vadde, Chem. Pharm. Bull.
59 (2011) 166.
[52] P. Bindu, M.R.P. Kurup, T.R. Satyakeerty, Polyhedron 18 (1999) 321.