RSC Advances
Communication
4 A. E. Favorskii, J. Prakt. Chem., 1895, 51, 533.
5 A. Baeyer and V. Villiger, Ber. Dtsch. Chem. Ges., 1899, 32, 3625.
6 A. Pinner and F. Klein, Ber. Dtsch. Chem. Ges., 1883, 16, 1643.
7 (a) D. A. Watson, X. Fan and S. L. Buchwald, J. Org. Chem., 2008,
73, 7096; (b) J. R. Martinelli, D. A. Watson, D. M. M. Freckmann,
T. E. Barder and S. L. Buchwald, J. Org. Chem., 2008, 73, 7102;
(c) R. H. Munday, J. R. Martinelli and S. L. Buchwald, J. Am.
Chem. Soc., 2008, 130, 2754; (d) X. Wu, H. Neumann and
B. Matthlas, ChemCatChem, 2010, 2, 509; (e) W. Yang, W. Han,
W. Zhang, L. Shan and J. Sun, Synlett, 2011, 2253; (f) Z. Xin, T.
M. Gogsig, A. T. Lindhardt and T. Skrydstrup, Org. Lett., 2012,
14, 284.
8 L. D. Bratton, H. Huh and R. A. Bartsch, J. Heterocycl. Chem.,
2000, 37, 2599.
9 S. Ushijima, K. Moriyama and H. Togo, Tetrahedron, 2012, 68,
4701.
10 (a) E. J. Corey, N. W. Gilman and B. E. Ganem, J. Am. Chem.
Soc., 1968, 90, 5616; (b) P. Sundararaman, E. C. Walker and
C. Djerassi, Tetrahedron Lett., 1978, 19, 1627; (c) P. J. Garegg,
L. Olcson and S. Oscarson, J. Org. Chem., 1995, 60, 2200; (d)
T. Ogawa and M. Matsui, J. Am. Chem. Soc., 1976, 98, 1629; (e)
K. Lee, H. Kim and J. Hong, Angew. Chem., Int. Ed., 2012, 51,
5735.
11 (a) B. R. Travis, M. Sivakumar, G. O. Hollist and B. Borhan, Org.
Lett., 2003, 5, 1031; (b) G. Quian, Z. Rui, D. Ji, G.-M. Lu, Y.-X. Qi
and J.-S. Suo, Chem. Lett., 2004, 33, 834; (c) N. N. Karade, V.
H. Budhewar, A. N. Katkar and G. B. Tiwari, ARKIVOC, 2006, xi,
162; (d) S. Sayama and T. Onami, Synlett, 2004, 2739; (e)
R. Gopinath and B. K. Patel, Org. Lett., 2000, 2, 577; (f) I. V.
P. Raj and A. Sudalai, Tetrahedron Lett., 2005, 46, 8303.
12 (a) J. L. Moore and T. Rovis, Top. Curr. Chem., 2009, 291, 77; (b)
E. M. Phillips, A. Chan and K. A. Scheidt, Aldrichimica Acta,
2009, 42, 55; (c) V. Nair, S. Vellalath and B. P. Babu, Chem. Soc.
Rev., 2008, 37, 2691; (d) D. Enders, O. Niemeier and A. Henseler,
Chem. Rev., 2007, 107, 5606; (e) N. Marion, S. Diez-Gonzalez and
S. P. Nolan, Angew. Chem., Int. Ed., 2007, 46, 2988; (f) K. Zeitler,
Angew. Chem., Int. Ed., 2005, 44, 7506; (g) D. Enders and
T. Balensiefer, Acc. Chem. Res., 2004, 37, 534.
13 (a) S. Diez-Gonzalez, N. Marion and S. P. Nolan, Chem. Rev.,
2009, 109, 3612; (b) S. Wurtz and F. Glorius, Acc. Chem. Res.,
2008, 41, 1523; (c) E. A. B. Kantchev, C. J. Obrien and M.
G. Organ, Angew. Chem., Int. Ed., 2007, 46, 2768; (d) S. Diez-
Gonzalez and S. P. Nolan, Coord. Chem. Rev., 2007, 251, 874; (e)
F. Glorius, N-Heterocyclic carbenes in Transition Metal Catalysis,
Springer, Berlin, 2007; (f) S. P. Nolan, N-Heterocyclic carbenes in
Synthesis, Wiley-VCH, Weinheim, Germany, 2006.
14 (a) S. De Sarkar, S. Grimme and A. Studer, J. Am. Chem. Soc.,
2010, 132, 1190; (b) S. De Sarkar and A. Studer, Angew. Chem.,
Int. Ed., 2010, 48, 9266; (c) C. A. Rose and K. Zeitler, Org. Lett.,
2010, 12, 4552; (d) B. E. Maki, A. Chan, E. M. Phillips and K.
A. Scheidt, Tetrahedron, 2009, 65, 3102; (e) C. Noonan,
L. Baragwanath and S. J. Connon, Tetrahedron Lett., 2008, 49,
4003; (f) B. E. Maki and K. A. Scheidt, Org. Lett., 2008, 10, 4331;
(g) B. E. Maki, A. Chan, E. M. Phillips and K. A. Scheidt, Org.
Lett., 2007, 9, 371; (h) H. Inoue and K. Higashiura, J. Chem. Soc.,
Chem. Commun., 1980, 549; (i) R. S. Reddy, J. N. Rosa, L.
F. Veiros, S. Caddick and P. M. P. Gois, Org. Biomol. Chem.,
2011, 9, 3126.
Scheme 2 Probable mechanistic pathway for the oxidative esterification.
1 equiv. of sodium methoxide was used as the alcohol component,
the corresponding methyl ester was obtained in 46% yield,
suggesting the possibility of alkoxide anion formation as the
intermediate. Based on this result and on precedents set by
the literature,16,18 we have proposed a catalytic cycle in which the
peroxy anion II16 formed from the reaction between the Breslow
intermediate I and O2 is depicted as the key intermediate in the
esterification process (Scheme 2). Upon decomposition this results
in the formation of the acyl intermediate III.16b Subsequently, the
alkoxide ion18 formed from the alcohol reacts with III to give the
corresponding ester with the liberation of NHC.
In conclusion, we have developed a simple organocatalytic
procedure for the direct oxidative esterification of aromatic
aldehydes with alcohols employing NHC as a catalyst and oxygen
as an oxidant at ambient conditions. The reaction is simple to
carry out and the products are obtained in high yields and purity
from stoichiometric amounts of alcohol and catalytic amounts of
organic base.
Acknowledgements
INCK and KL thank CSIR, New Delhi for the award of a
research fellowship and DST (No. SR/S1/OC-67/2010) New
Delhi, for financial support. The authors are thankful to Dr V.
V. Ranade, Head, CEPD, for his constant support and
encouragement.
References
1 (a) The Art of Drug Synthesis, ed. D. S. Johnson and J. J. Li, John
Wiley and Sons, Hoboken, NJ, 2007; (b) A. Zapf and M. Beller,
Top. Catal., 2002, 19, 101; (c) J. Stetter and F. Lieb, Angew.
Chem., Int. Ed., 2000, 39, 1724.
2 (a) E. Fischer and A. Speier, Ber. Dtsch. Chem. Ges., 1895, 28,
3252; (b) R. C. Larock, Comprehensive Organic Transformations,
VCH, New York, USA, 2nd edn, 1989, pp. 881; (c) S. P. Bew, D.
L. Hughes and S. V. Sharma, J. Org. Chem., 2006, 71, 7881.
3 O. Mitsunobu, Synthesis, 1981, 1.
15 (a) Y. C. Xin, S. H. Shi, D. D. Xie, X. P. Hui and P. F. Xu, Eur. J.
Org. Chem., 2011, 6527; (b) B. Maji, S. Vedachalan, X. Ge, S. Cai
and X.-W. Liu, J. Org. Chem., 2011, 76, 3016.
This journal is ß The Royal Society of Chemistry 2013
RSC Adv., 2013, 3, 1695–1698 | 1697