Therefore, the significant fluorescence enhancement might
result from the electrostatic interaction between CNÀ and
Besides, compound P2 has been used to construct a logic circuit
and a molecular keypad lock with UV irradiation, Cu2+ and CNÀ
as inputs, at the first time. This present work provides deeper
insights for the future design of unsymmetrical photochromic
compounds as multifunctional nanoscale logic devices.
This work was financially supported by NSFC (21190033),
National 973 Program (2011CB808400).
P2–Cu2+ 8a,12
As shown in Fig. S20, the detection limit for
.
CNÀ is 22.5 nM and there is a fairly linear relationship
between the fluorescence intensity and concentrations of
CNÀ from 4.0 to 20.0 mM in CH3CN solution (R = 0.993),
which can be applied as a calibration curve for CNÀ detection.
Therefore, compound P2 and its complex P2–Cu2+ can serve
as fluorescence enhancement chemosensors for Cu2+ and
CNÀ with high selectivity and sensitivity, respectively.
Notes and references
1 (a) H. Tian, Angew. Chem., Int. Ed., 2010, 49, 4710; (b) D. Margulies,
C. E. Felder, G. Melman and A. Shanzer, J. Am. Chem. Soc., 2007,
129, 347; (c) A. P. de Silva, Chem.–Asian J., 2011, 6, 750;
Additionally, there is no effect on the fluorescence intensity
of P2 and P3 in the presence of CNÀ only; nevertheless,
sequentially adding Cu2+ to the solution can also induce a
‘‘turn-on’’ signal (Fig. S21 and S22, ESIw, respectively).
Besides, the fluorescence of P2–Cu2+ and P2–Cu2+–CNÀ is
quenched when they are exposed to UV light (Fig. S23 and
S24, ESIw, respectively), which is attributed to the efficient
energy transfer from the excited fluorophore core to the
attached closed-ring BTE unit that has a lower energy level.3
These studies inspire us to utilize compound P2 to develop a
complicated logic circuit for a molecular traffic signal with three
inputs: UV irradiation, Cu2+ and CNÀ as input-1, input-2 and
input-3, respectively. The outputs are designated as output-1
(I r 100), output-2 (100 o I r 150) and output-3 (I > 150),
respectively, where I is the value of fluorescence intensity at
448 nm. If the value of I locates in a specific range, the
corresponding output is considered as the ‘‘1’’ state, otherwise, it
is considered as the ‘‘0’’ state. Thus, according to the truth table
(Table S1, ESIw), a logic circuit with AND, OR and NOT gates
integrated within a single molecule is approached (Fig. 3a).
Depending on the different combinations of three inputs (UV
irradiation, Cu2+ and CNÀ designated as ‘‘U’’, ‘‘C’’ and ‘‘T’’,
respectively), compound P2 can switch between different
fluorescence emission states ‘‘On and Off’’. A molecular keypad
lock is constructed to visualize these sequence-dependent pheno-
mena directly. Out of six possible input combinations i.e. UCT,
UTC, CUT, CTU, TUC, TCU, only the UCT input combi-
nation (i.e. it is the password) gives birth to an instinct
fluorescent output signal (Fig. S25, ESIw). As illustrated in
Fig. 3b, when the sequence of three input keys UCT is inserted,
the keypad lock ‘‘opens’’, corresponding to a strong fluores-
cence signal. All other sequences (as wrong passwords), which
give weak fluorescence signal outputs, fail to open the lock.
In summary, two novel diarylethenes P1 and P2 with unsym-
metrical structures have been successfully synthesized. The photo-
chromic properties of compound P2 and its complex P2–Cu2+
can be easily modulated by employing Cu2+ and CNÀ, respec-
tively. P2 and P2–Cu2+ can be considered as fluorescence
enhancement chemosensors for Cu2+ and CNÀ, respectively.
(d) J. Andreasson, U. Pischel, S. D. Straight, T. A. Moore,
´
A. L. Moore and D. Gust, J. Am. Chem. Soc., 2011, 133, 11641.
2 (a) Z. Q. Guo, W. H. Zhu, L. J. Shen and H. Tian, Angew. Chem.,
Int. Ed., 2007, 46, 5549; (b) M. Kumar, R. Kumar and V. Bhalla,
Chem. Commun., 2009, 7384; (c) M. Kumar, A. Dhir and
V. Bhalla, Org. Lett., 2009, 11, 2567; (d) M. Suresh, A. Ghosh
and A. Das, Chem. Commun., 2008, 3906; (e) X. L. Ni, X. Zeng,
C. Redshaw and T. Yamato, J. Org. Chem., 2011, 76, 5696;
(f) J. Wang and C.-S. Ha, Analyst, 2010, 135, 1214.
3 (a) H. Tian and S. Wang, Chem. Commun., 2007, 781; (b) M. Irie,
S. Kobatake and M. Horichi, Science, 2001, 291, 1769; (c) M. Irie,
Chem. Rev., 2000, 100, 1685; (d) S. Kobatake and Y. Terakawa,
Chem. Commun., 2007, 1698; (e) T. Shiozawa, M. K. Hossain,
T. Ubukata and Y. Yokoyama, Chem. Commun., 2010, 46, 4785.
4 (a) J. J. Zhang, M. Riskin, R. Freeman, R. Tel-Vered, D. Balogh,
H. Tian and I. Willner, ACS Nano, 2011, 5, 5936; (b) H. H. Liu and
Y. Chen, J. Mater. Chem., 2009, 19, 706; (c) H. H. Liu and
Y. Chen, Eur. J. Org. Chem., 2009, 5261; (d) H. Tian, B. Qin,
R. X. Yao, X. L. Zhao and S. J. Yang, Adv. Mater., 2003, 15, 2104;
(e) Z. G. Zhou, S. Z. Xiao, J. Xu, Z. Q. Liu, M. Shi, F. Y. Li, T. Yi
and C. H. Huang, Org. Lett., 2006, 8, 3911; (f) J. J. Zhang,
W. J. Tan, X. L. Meng and H. Tian, J. Mater. Chem., 2009,
19, 5726.
5 (a) Q. Zou, J. Y. Jin, B. Xu, L. Ding and H. Tian, Tetrahedron,
2011, 67, 915; (b) W. J. Liu, S. Z. Pu, S. Q. Cui, G. Liu and
C. B. Fan, Tetrahedron, 2011, 67, 4236.
6 (a) K. C. Ko, J. S. Wu, H. J. Kim, P. S. Kwon, J. W. Kim,
R. A. Bartsch, J. Y. Lee and J. S. Kim, Chem. Commun., 2011,
47, 3165; (b) P. Li, X. Duan, Z. Z. Chen, Y. Liu, T. Xie, L. B. Fang,
X. R. Li, M. Yin and B. Tang, Chem. Commun., 2011, 47, 7755;
(c) J. R. Sheng, F. Feng, Y. Qiang, F. G. Liang, L. Sen and
F. H. Wei, Anal. Lett., 2008, 41, 2203; (d) V. Chandrasekhar,
P. Bag and M. D. Pandey, Tetrahedron, 2009, 65, 9876;
(e) E. J. Jun, H. N. Won, J. S. Kim, K.-H. Lee and J. Yoon,
Tetrahedron Lett., 2006, 47, 4577.
7 (a) H. N. Kim, Z. Q. Guo, W. H. Zhu, J. Yoon and H. Tian, Chem.
Soc. Rev., 2011, 40, 79; (b) D. T. Quang and J. S. Kim, Chem. Rev.,
2010, 110, 6280; (c) J. F. Callan, A. P. de Silva and D. C. Magri,
Tetrahedron, 2005, 61, 8551.
8 (a) X. M. Huang, Z. Q. Guo, W. H. Zhu, Y. S. Xie and H. Tian,
Chem. Commun., 2008, 5143; (b) J. F. Zhang, S. Kim, J. H. Han,
S.-J. Lee, T. Pradhan, Q. Y. Cao, S. J. Lee, C. Kang and J. S. Kim,
Org. Lett., 2011, 13, 5294; (c) S.-Y. Chung, S.-W. Nam, J. Lim,
S. Park and J. Yoon, Chem. Commun., 2009, 2866; (d) J. H. Lee,
A. R. Jeong, J.-H. Jung, C.-M. Park and J.-I. Hong, J. Org. Chem.,
2011, 76, 417; (e) X. W. Cao, W. Y. Lin and L. W. He, Org. Lett.,
2011, 13, 4716; (f) P. Das, A. Ghosh, M. K. Kesharwani, V. Ramu,
B. Ganguly and A. Das, Eur. J. Inorg. Chem., 2011, 3050.
9 (a) L. Fabbrizzi, N. Marcotte, F. Stomeo and A. Taglietti, Angew.
Chem., Int. Ed., 2002, 41, 3811; (b) C. R. Maldonado, A. Touceda-
Varela, A. C. Jones and J. C. Mareque-Rivas, Chem. Commun.,
2011, 47, 11700.
10 (a) J. S. Wu, W. M. Liu, J. C. Ge, H. Y. Zhang and P. F. Wang,
Chem. Soc. Rev., 2011, 40, 3483; (b) J. S. Wu, W. M. Liu,
X. Q. Zhuang, F. Wang, P. F. Wang, S. L. Tao, X. H. Zhang,
S. K. Wu and S. T. Lee, Org. Lett., 2007, 9, 33.
11 A. F. Chaudhry, S. Mandal, K. I. Hardcastle and C. J. Fahrni,
Chem. Sci., 2011, 2, 1016.
Fig. 3 (a) A logic circuit and (b) a fluorescence keypad lock with
inputs of UV irradiation, Cu2+ and CNÀ. Details are shown in the text.
12 H.-C. Gee, C.-H. Lee, Y.-H. Jeong and W.-D. Jang, Chem.
Commun., 2011, 47, 11963.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 2095–2097 2097