S.-S. Shen et al. / Tetrahedron Letters 53 (2012) 986–990
989
Table 3
2. (a) Kaneda, K.; Fujii, M.; Morioka, K. J. Org. Chem. 1996, 61, 4502–4503; (b)
Peterson, K. P.; Larock, R. C. J. Org. Chem. 1998, 63, 3185–3189; (c) Schultz, M. J.;
Adler, R. S.; Zierkiewicz, W.; Privalov, T.; Sigman, M. S. J. Am. Chem. Soc. 2005,
127, 8499–8507; (d) Steinhoff, B. A.; Guzei, I. A.; Stahl, S. S. J. Am. Chem. Soc.
2004, 126, 11268–11278.
NHI-1 and CuCl-catalyzed oxidation of primary allylic and benzylic alcoholsa
10 mol% NHI-1 /CuCl
COOH
13
R
R
OH
O
R
DMF (0.5 M), 50°C
O2 (1 atm)
3. Kaneda, K.; Yamashita, T.; Matsushita, T.; Ebitani, K. J. Org. Chem. 1998, 63,
1750–1751.
11
12
4. (a) Arita, S.; Koike, T.; Kayaki, Y.; Ikariya, T. Angew. Chem., Int. Ed. 2008, 47,
2447–2449; (b) Jiang, B.; Feng, Y.; Ison, E. A. J. Am. Chem. Soc. 2008, 130, 14462–
14464.
5. For nitroxy radical catalyzed alcohol oxidations, see: (a) Sheldon, R. A.; Arends,
I. W. C. E. Adv. Synth. Catal. 2004, 346, 1051–1071; (b) de Nooy, A. E. J.; Besemer,
A. C.; van Bekkum, H. Synthesis 1996, 1153–1174.
6. For AZADO derivative catalyzed oxidations, see: (a) Shibuya, M.; Osada, Y.;
Sasano, Y.; Tomizawa, M.; Iwabuchi, Y. J. Am. Chem. Soc. 2011, 133, 6497–6500;
(b) Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem. Soc. 2006,
128, 8412–8413; (c) Shibuya, M.; Tomizawa, M.; Sasano, Y.; Iwabuchi, Y. J. Org.
Chem. 2009, 74, 4619–4622; (d) Shibuya, M.; Sato, T.; Tomizawa, M.; Iwabuchi,
Y. Chem. Commun. 2009, 1739–1741.
Entry Alcohol
Time (h) Aldehydeb (%) Acidb (%)
OH
1
11k 11
12k (85)
12l (75)
13k (13)
13l (9)
MeO
OH
OH
2
3
11l
12
11m 24
12m (65)
13m (13)
7. Gartshorea, C. J.; Lupton, D. W. Adv. Synth. Catal. 2010, 352, 3321–3328.
8. For the preparation of these N-hydroxylindoles, see: (a) Belley, M.; Beaudoin,
D.; St-Pierre, G. Synlett 2007, 2999–3002; (b) Belley, M.; Beaudoin, D.; Duspara,
P.; Sauer, E.; St-Pierre, G.; Trimble, L. A. Synlett 2007, 2991–2994; (c) Wróbel,
Z.; Ma˛kosza, M. Tetrahedron 1997, 53, 5501–5514.
9. For nitroxyl radicals in Cu(I)- or Cu(II)-catalyzed aerobic oxidations of alcohols,
see: (a) Kitajima, N.; Whang, K.; Moro-oka, Y.; Uchida, A.; Sasada, Y. J. Chem.
Soc. 1986, 1504–1505; (b) Wang, Y.; Stack, T. D. P. J. Am. Chem. Soc. 1996, 118,
13097–13098; (c) Wang, Y.; Du Bois, J. L.; Hedman, B.; Hodgson, K.; Stack, T. D.
P. Science 1998, 279, 537–540; (d) Chaudhuri, P.; Hess, M.; Flörke, U.;
Wieghardt, K. Angew. Chem., Int. Ed. 1998, 37, 2217–2220; (e) Mahadevan, V.;
Du Bois, J. L.; Hedman, B.; Hodgson, K.; Stack, T. D. P. J. Am. Chem. Soc. 1999, 121,
5583–5584; (f) Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A.; Chou, S. J. Am.
Chem. Soc. 1984, 106, 3374–3376; (g) Dijksman, A.; Arends, I. W. C. E.; Sheldon,
R. A. Org. Biomol. Chem. 2003, 1, 3232–3237.
4c
11n 24
11o 18
11p 48
12n (62)
12o (52)
N.R.d
13n (14)
13o (12)
n-C10H21
OH
5
Ph
OH
OH
6
Ph
a
b
c
All reactions were carried out using alcohol (2.0 mmol) in DMF (4 mL).
Isolated yield.
4% of (E)-4-oxotridec-2-enal (15n) was isolated.
No reaction.
d
10. TEMPO (10 mol %) and CuCl (10 mol %) in DMF was used for the oxidation of
diol 11i at 50 °C, chemoselective oxidation of the allylic alcohol occurred, but
gave a 23% yield of 12i after 24 h (37% yield, 48 h).9f (b) Oxidation of 11i with
TEMPO (10 mol %), NaOCl (150 mol %), KBr (10 mol %), Bu4NBr (5 mol %), aq
NaHCO3 in CH2Cl2 at 0 °C was also tested but afforded ketone 12i in only 50%
yield although 11i was completely consumed. (c) Anelli, P. L.; Banfi, C.;
Montanari, F.; Quici, S. J. Org. Chem. 1987, 52, 2559–2562.
11. Lucas, H. R.; Li, L.; Narducci Sarjeant, A. A.; Vance, M. A.; Solomon, E. I.; Karlin,
K. D. J. Am. Chem. Soc. 2009, 131, 3230–3245.
12. de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H. Tetrahedron 1995, 51, 8023–
8032.
t
COO Bu
-H+
OH
R'
12
12
COOtBu
Me
R
R
Me
N
OH
F3C
Cu(II)
NHI-1
N
F3C
OH
R'
O
O
R
H
13. Typical procedure for tert-Butyl 1-hydroxy-2-methyl-6-trifluoromethyl-1H-
indole-3-carboxylate (NHI-1): At 0 °C, tert-butyl acetoacetate (6.62 mL,
R'
path B
R
path A
COOtBu
Me
40 mmol) was added dropwise to
42 mmol) in dry THF (200 mL) under a nitrogen atmosphere. The mixture
was left to stir at 0 °C until clear solution formed. 1-Fluoro-2-nitro-4-
a suspension of NaH (60%) (1.68 g,
11
a
Cu(I)-O2
COOtBu
trifluoromethylbenzene (2.8 mL, 20 mmol) was added dropwise and the
mixture was allowed to stir under reflux. After consumption of the starting
material (7 h), the mixture was cooled to room temperature and quenched
with H2O (300 mL) and extracted with EtOAc (50 mL Â 3). The extracts were
dried over anhydrous MgSO4, filtered and evaporated under reduced pressure.
The crude residue was purified by flash column chromatography (silica gel;
hexane–EtOAc = 250: 1) to give (E)-tert-butyl 3-hydroxy-2-(2-nitro-4-
trifluoromethylphenyl)but-2-enoate (14a) as a yellow oil (6.47 g, 18.6 mmol,
N
F3C
H
C
O
O
R'
Me
H
Cu
N
F3C
COOt Bu
Me
O
oxoammonium cation
93% yield) as
a mixture of enol (major) and ketone (minor) isomers as
11
N
O
determined from the NMR spectrum. Yellow oil, 1H NMR (400 MHz, CDCl3) d
13.26 (0.94H, OH, s), 8.30 (0.06H, s), 8.23 (0.94H, s), 7.88 (0.06H, dd, J = 1.2 Hz,
8.0 Hz), 7.82 (0.94H, dd, J = 1.2 Hz, 8.0 Hz), 7.66 (0.06H, d, J = 8.0 Hz), 7.44
(0.94H, d, J = 8.0 Hz), 5.30 (0.06H, s), 2.44 (0.18H, s), 1.90 (2.82H, s), 1.49
(0.54H, s), 1.34 (8.46H, s); 13C NMR (100 MHz, CDCl3) d 173.27, 169.95, 149.69,
134.72, 134.51, 130.72 (q, J = 34 Hz), 128.97 (q, J = 3 Hz), 124.21, 121.56 (q,
F3C
2
O
-
I)
(
u
C
Scheme 3. Two proposed mechanistic pathways.
J = 4 Hz), 101.35, 83.12, 27.82 (3 C), 20.02; IR (KBr)
m 3020, 2982, 1645, 1539,
Acknowledgments
1354, 1323, 1152 cmÀ1; HRMS (ESI) calcd for C15H17F3NO5 [M+H]+: 348.1059,
found: 348.1055. In the next step, to 5% Pd/C (1.7 g, 0.82 mmol) in a flask was
added EtOAc (20 mL) and Pd(PPh3)4 (0.19 g, 0.016 mmol), followed by 14a
(5.7 g, 16.42 mmol) in EtOAc (40 mL) and AcOH (15 mL). The reaction mixture
was degassed and changed to a hydrogen balloon (1 atm). The mixture was
allowed to stir at room temperature until complete (12 h). The mixture was
filtered through Celite and rinsed with EtOAc. The solvents were removed
under reduced pressure and the residue was purified by flash column
chromatography (silica gel; hexane–EtOAc = 8: 1) to give pure tert-butyl 1-
This work was supported by funding from Nanyang Technolog-
ical University and Singapore Ministry of Education.
Supplementary data
Supplementary data associated with this article can be found, in
hydroxy-2-methyl-6-trifluoromethyl-1H-indole-3-carboxylate (NHI-1) as
a
white solid (4.21 g, 80% yield). Mp 163–165 °C, 1H NMR (400 MHz, DMSO-d6)
d 11.91 (1H, OH, s), 8.14 (1H, d, J = 8.4 Hz), 7.74 (1H, s), 7.46 (1H, d, J = 8.4 Hz),
2.69 (3H, s), 1.59 (9H, s); 13C NMR (100 MHz, DMSO-d6) d 163.66, 144.19,
131.70, 124.99 (q, J = 270 Hz), 124.70, 122.25 (q, J = 31.5 Hz), 121.13, 117.60 (d,
References and notes
J = 3 Hz), 105.77 (d, J = 4 Hz), 99.78, 79.55, 28.19 (3C), 10.56; IR (KBr)
3071, 1643, 1537, 1448, 1333, 1163, 1120 cmÀ1
HRMS (ESI) calcd for
15H17F3NO3 [M+H]+: 316.1161, found: 316.1169. The structure of NHI-1 was
established by X-ray crystallographic analysis (see Supplementary data), CCDC
818557 contains the supplementary crystallographic data for compound NHI-
m 3090,
1. For the oxidation of allylic alcohols by transition metals, see: (a) Uma, R.;
Crévisy, C.; Grée, R. Chem. Rev. 2003, 103, 27–51. and references therein; (b)
Bolm, C.; Magnus, A. S.; Hildebrand, J. P. Org. Lett. 2000, 2, 1173–1175; (c)
Miller, R. A.; Hoerrner, R. S. Org. Lett. 2003, 5, 285–287; (d) Cosner, C. C.;
Cabrera, P. J.; Byrd, K. M.; Thomas, A. M. A.; Helquist, P. Org. Lett. 2011, 13,
2071–2073; (e) Hanson, S. K.; Wu, R.; Silks, L. A. Org. Lett. 2011, 13, 1908–1911.
;
C