12 Y. Olivier, V. Lemaur, J. L. Bredas and J. Cornil, J. Phys. Chem. A,
2006, 110, 6356.
related to the efficiency of the film–electrode contacts in the
DSSCs devices.
13 R. A. Marcus, J. Chem. Phys., 1956, 24, 966.
14 V. G. Levich, Adv. Electrochem. Sci. Eng., 1966, 4, 249.
15 R. A. Marcus and N. Sutin, Biochim. Biophys. Acta, 1985, 811, 265.
16 R. A. Marcus, Rev. Mod. Phys., 1993, 65, 599.
17 W. Kohn and L. Sham, Phys. Rev., 1965, 140, A1133.
18 M. Kirkus, R. Lygaitis, M. H. Tsai, J. V. Grazulevicius and C. C. Wu,
Synth. Met., 2008, 158, 226.
Both factors (electronic couplings and HOMO energies) work
in concert, suggesting enhanced performances of the methoxy-
substituted compounds with the highest one found for the
methoxy-para-substituted compound.
In the frame of this study, the role of the methoxy groups is
found to be related to two principal properties: the well-known
mesomeric (p-donor) effect and the possibility to establish
C–H/p(Ph) and C–H/X (X ¼ O, N) hydrogen bonds. The
effects of these properties are multiple: (i) destabilize the HOMO
orbital and decrease the Ip values of 2, 3, and 4 with respect to 1.
(ii) Introduce anti-bonding interactions in the HOMO of
para- and (to a lesser extent) ortho-substituted compounds which
are reduced in the excited states. Due to this effect, the para- (and
ortho-) substituted compounds undergo supplementary geom-
etry-relaxation effects after photon absorption, suggesting one
possible contribution to the increased Stokes shifts. The same
effect is found to contribute to the increase of the intramolecular
reorganization energies of para- (and ortho-) substituted
compounds. (iii) In these amorphous materials, where compact
and dilute packed contacts between monomers coexist, the
methoxy groups introduce additional possibilities for establish-
ing short contacts between adjacent molecules (at larger center-
to-center distances as compared to the non-substituted
compound) which seem to play a central role in the case of dilute
packing. In this frame, the electronic couplings and kHT for the
methoxy-substituted compounds are enhanced as compared to
the non-substituted one.
19 E.
Miyamoto,
Electrophotography, 1989, 28, 364.
Y.
Yamaguchi
and
M.
Yokoyama,
20 E. Montrimas, V. Gaidelis and A. Pazera, Lith. J. Phys., 1966, 6, 569.
21 S. M. Vaezi-Nejad, Int. J. Electron., 1987, 62, 361.
22 S. Grigalevicius, V. Getautis, J. V. Grazulevicius, V. Gaidelis,
V. Jankauskas and E. Montrimas, Mater. Chem. Phys., 2001, 72, 395.
23 C. T. Lee, W. T. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
24 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
25 M. J. Frisch, G. W. Trucks and H. B. Schlegel, GAUSSIAN 09,
Revision B.01, Gaussian, Inc., Wallingford, CT, 2009.
26 E. K. U. Gross and W. Kohn, Phys. Rev. Lett., 1985, 55, 2850.
27 E. Runge and E. K. U. Gross, Phys. Rev. Lett., 1984, 52, 997.
28 E. K. U. Gross and W. Kohn, Adv. Quantum Chem., 1990, 21, 255.
29 R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 1996, 256, 454.
30 M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J. Chem.
Phys., 1998, 108, 4439.
31 J. L. Bredas, D. Beljonne, V. Coropceanu and J. Cornil, Chem. Rev.,
2004, 104, 4971.
32 M. D. Newton, Chem. Rev., 1991, 91, 767.
33 K. Senthikumar, F. C. Grozema, F. M. Bickelhaupt and
L. D. A. Siebbeles, J. Chem. Phys., 2003, 119, 9809.
34 E. F. Valeev, V. Coropceanu, D. A. da Silva, S. Salman and
J. L. Bredas, J. Am. Chem. Soc., 2006, 128, 9882.
35 H. Li, J. L. Bredas and C. Lennartz, J. Chem. Phys., 2007, 126,
164704.
36 T. Kawatsu, V. Coropceanu, D. A. da Silva, S. Salman and
J. L. Bredas, J. Phys. Chem. C, 2008, 112, 3429.
37 J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10,
6615.
38 G. Sini, J. S. Sears and J. L. Bredas, J. Chem. Theory Comput., 2011,
7, 602.
39 K. Yesudas, G. Sini and J. L. Bredas, Manuscript under preparation.
40 S. F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553.
41 F. Ullmann and J. Bielecki, Ber. Dtsch. Chem. Ges., 1901, 34, 2174.
42 M. Malagoli and J. L. Bredas, Chem. Phys. Lett., 2000, 327, 13.
43 K. Sakanoue, M. Motoda, M. Sugimoto and S. Sakaki, J. Phys.
Chem. A, 1999, 103, 5551.
Finally, the absorption bands of these compounds are situated
in the UV domain and the thermal properties are satisfying
which makes them good candidates for DSSC applications.
Acknowledgements
This research was funded by a grant no. MIP-059/2011 from the
Research Council of Lithuania. G.S. thanks Dr Veaceslav
Coropceanu and Prof. Dr Bernard Kippelen (Georgia Institute
of Technology) for stimulating discussions.
44 B. C. Lin, C. P. Cheng and Z. P. M. Lao, J. Phys. Chem. A, 2003, 107,
5241.
45 H. Xiao, B. Leng and H. Tian, Polymer, 2005, 46, 5707.
46 The effect of the para-methoxy substitutions on the Ph–‘‘N–plane’’
dihedral angles and on the Ph–N–Ph p-conjugation should be
cancelled out due to the opposite signs of these changes (see Section
3.3).
References
47 It is worth remembering that this explanation ignores the orbital level
shift happening at the material–electrode interface. However, due to
the structural similarity of these compounds no profound alteration
of the above trend should be expected.
48 The contribution of the bridge in the relaxation energy should be
negligible as suggested from the comparison between the li values
of TPA–CH3 and TPA–C6H11 model compound (0.126 and 0.13 eV
respectively, this work).
49 T. Takagi, A. Tanaka, S. Matsuo, H. Maezaki, M. Tani, H. Fujiwara
and Y. Sasaki, J. Chem. Soc., Perkin Trans. 2, 1987, 1015.
50 J. L. Bredas and G. B. Street, J. Chem. Phys., 1989, 90,
7291.
51 D. Braga, F. Grepioni and E. Tedesco, Organometallics, 1998, 17,
2669.
1 Y. J. Shirota, J. Mater. Chem., 2005, 15, 75.
2 S. Gunes, H. Neugebauer and N. S. Sariciftci, Chem. Rev., 2007, 107,
1324.
3 J. V. Grazulevicius, Polym. Adv. Technol., 2006, 17, 694.
4 P. M. Borsenberger and D. S. Weiss, Organic Photoreceptors for
Xerography, Marcel Dekker, New York, 1998.
5 E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. W. Leedy
and R. N. Adams, J. Am. Chem. Soc., 1966, 88, 3498.
6 J. H. Pan, Y. M. Chou, H. L. Chiu and B. C. Wang, Aust. J. Chem.,
2009, 62, 483.
7 J. L. Maldonado, M. Bishop, C. Fuentes-Hernandez, P. Caron,
B. Domercq, Y. D. Zhang, S. Barlow, S. Thayumanavan,
M. Malagoli, J. L. Bredas, S. R. Marder and B. Kippelen, Chem.
Mater., 2003, 15, 994.
52 L. Brunel, F. Carre, S. G. Dutremez, C. Guerin, F. Dahan,
O. Eisenstein and G. Sini, Organometallics, 2001, 20, 47.
53 L. Orian, P. Ganis, S. Santi and A. Ceccon, J. Organomet. Chem.,
2005, 690, 482.
54 The geometries of 1–4 are not symmetric and part of the energy
difference between HOMO and HOMO-1 orbitals might be due to
the mutual polarization between the two TPA moieties. However,
the two geminal Ph rings in 1–4 are positioned almost
8 R. D. Hreha, C. P. George, A. Haldi, B. Domercq, M. Malagoli,
S. Barlow, J. L. Bredas, B. Kippelen and S. R. Marder, Adv. Funct.
Mater., 2003, 13, 967.
9 X. Wu, A. P. Davis, P. C. Lambert, L. K. Steffen, O. Toy and
A. J. Fry, Tetrahedron, 2009, 65, 2408.
10 H. Bassler, Phys. Status Solidi B, 1993, 175, 15.
11 V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey
and J. L. Bredas, Chem. Rev., 2007, 107, 2165.
3026 | J. Mater. Chem., 2012, 22, 3015–3027
This journal is ª The Royal Society of Chemistry 2012