7214
V. N. Sagi et al. / Bioorg. Med. Chem. Lett. 21 (2011) 7210–7215
in binding. The replacement of carbon at 4th position of piperidine
with O, S, SO2, NH, substituted (alkyl or aryl) NH, or removal of cyc-
lic constraint were in fact not tolerated and caused significant loss
of GalR2 binding affinity. Replacement of p-OCH3-aniline at 2-posi-
tion with p-OC2H5, p-isopropoxy or p-Cl aniline also caused loss of
affinity. In fact, while keeping piperidine at the 4-position and
interchanging of 3-F-4-OCH3 and p-OCH3-aniline from 6-position
to 2-position also caused significant loss of GalR2 binding affinity
(not listed in the table). Among all pyrimidine derivatives,
compounds 6mm and 6nn shows selective binding affinity for
the reaction. The reaction progress was followed by TLC. After completion of
the reaction, an equal volume of water was added with cooling. The resulting
white precipitate was filtered, washed with water, and dried in vacuum over
night to yield 4-substituted 2,6-dichloro pyrimidine. In case of no
precipitation, ethanol was removed by rota vap., and the residue was
dissolved in CH2Cl2. The organic layer was washed twice with water, brine,
dried (Na2SO4), filtered, and concentrated. The resulting crude was purified by
column chromatography to afford the 4-amino-2,6-dichloro pyrimidines in
85–95% yield. Step-2: 2,4-diamino-6-chloropyrimidine: 4-amino-2,6-dichloro
pyrimidine (1.0 mmol) prepared from the above procedure was treated with
another aliphatic amine or aromatic amine (2.0 mmol) in the presence of
DIEPA (5.0 mmol) in n-BuOH (5 mL) at rt. For an aliphatic amine the reaction
mixture was stirred at rt for overnight. For an aromatic amine the reaction
mixture was refluxed for 24–72 h or placed in microwave (150 °C, 2–7 h) until
completion of the reaction. The reaction progress was followed by TLC. After
completion of the reaction, solvents were removed by rota vap., and the
residue was dissolved in CH2Cl2. The organic layer was washed twice with
water, brine, dried (Na2SO4), filtered, and concentrated. The resulting
crude was purified by column chromatography (EtOAc/hexane) to afford the
2,4-diammino-6-chloropyrimidines in 85–90% yield. Step-3: 2,4,6-
GalR1 with IC50 3.8 lM each.
In summary, small molecular novel 2,4,6-triaminopyrimidine
derivatives were designed, synthesized, and subsequently tested
for affinities for GalR1 and GalR2. Eight compounds of the series
of structure 6A, where p-OCH3-aniline at the 4-position and piper-
idine at the 2-position of the pyrimidine core exhibited the highest
triaminopyrimidine:
2,4-diamino-6-chloropyrimidine
(1.0 mmol)
prepared from the above procedure was treated with another
suitable aliphatic amine or aromatic amine (3.0 mmol). For an
aliphatic amine, 2,4-diamino-6-chloropyrimidine (1.0 mmol) was
treated with aliphatic amine (3.0 mmol) and DIPEA (5.0 mmol) in n-
BuOH (5 mL) and placed in microwave (150 °C) for 3–7 h. After the
completion of the reaction (monitored by TLC), solvents were removed
and the residue was dissolved in EtOAc. The organic layer was washed
twice with water, brine, dried (Na2SO4), filtered, and concentrated. The
resulting crude was purified by column chromatography to afford the
2,4,6-triaminopyrimidines 90–95% yield. For aromatic amine; 2,4-
diamino-6-chloropyrimidine (1.0 equiv) was dissolved in dioxane
under argon and to that were added Pd2(dba)3 (10 mol %), Xantphos
(10 mol %), aromatic amine (1.2 mmol), t-BuOK (1.2 mmol). The
resulting solution was degassed with argon for 5 min and heated to
85 °C for overnight. The reaction mixture was filtered through a pad of
celite, washed with CH2Cl2 (2 Â 10 mL) and the resulting filtrate was
concentrated. The resulting crude was purified by flash column
chromatography to yield 2,4,6-triaminopyrimidines in 90–95% yield.
18. Spectral data for selected compounds:N2-(4-methoxyphenyl)-6-(piperidin-1-yl)-
N4-(4-(trifluoromethoxy)phene-yl)pyrimidine-2,4-diamine[6x (CYM2235)]: 1H
NMR (300 MHz, CDCl3) d 7.44 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 7.14
(d, J = 8.3 Hz, 2H), 6.83 (d, J = 8.5 Hz, 2H), 6.61 (br s, 1H), 5.44 (s, 1H), 3.78 (s,
3H), 3.51 (br s, 4H), 1.60 (br s, 6H); 13C NMR (CDCl3, 75 MHz) d 164.01, 161.71,
159.87, 154.92, 144.44, 138.79, 133.70, 122.29, 121.99, 121.48, 113.99, 75.90,
55.64, 45.56, 25.66, 24.88. ESI-MS (m/z): calcd for C23H24F3N5O2 459.46, found
460.5 [M+H]+. LC–MS >98%, tR = 3.25 min, m/z 460 [M+H]+.
affinity for GalR2 receptor with IC50 ranging from 0.33 to 1.0 lM.
Further results from this lab regarding the activity of these and
similar compounds will be presented in due course.
Acknowledgment
This work was supported by National Institute of Health Grant
NS063560.
References and notes
1. Tatemoto, K.; Rökaeus, A.; Jörnvall, H.; McDonald, T. J.; Mutt, V. FEBS Lett. 1983,
16, 124.
2. Melander, T.; Rokaeus, A.; Hokfelt, T. J. Comp. Neurol. 1986, 248, 475.
3. Skofitsch, G.; Jacobowitz, D. M. Peptides 1986, 7, 609.
4. Vrontakis, M. E.; Peden, L. M.; Duckworth, M. L.; Friesen, H. G. J. Biol. Chem.
1987, 262, 16755.
5. (a) Counts, S. E.; Perez, S. E.; Mufson, E. J. Cell Mol. Life Sci. 2008, 65, 1842; (b)
Crawley, J. N. Cell Mol. Life Sci. 2008, 65, 1836; (c) Holmes, A.; Picciotto, M. R. C.
N. S. Neurol. Disord.: Drug Targets 2006, 5, 225; (d) Kalra, S. P.; Horvath, T. L. Ann.
N. Y. Acad. Sci. 1998, 863, 236; (e) Leibowitz, S. F. Neuropeptides 2005, 39, 327;
(f) Liu, H. X.; Hokfelt, T. Trends Pharmacol. Sci. 2002, 23, 468; (g) Lu, X.; Sharkey,
L.; Bartfai, T. C. N. S. Neurol. Disord.: Drug Targets 2007, 6, 183; (h) Ogren, S. O.;
Kuteeva, E.; Elvander-Tottie, E.; Hökfelt, T. Eur. J. Pharmacol. 2010, 626, 9; (i)
Picciotto, M. R.; Brabant, C.; Einstein, E. B.; Kamens, H. M.; Neugebauer, N. M.
Brain Res. 2010, 1314, 206; (j) Weiss, J. M.; Bonsall, R. W.; Demetrikopoulos, M.
K.; Emery, M. S.; West, C. H. Ann. N. Y. Acad. Sci. 1998, 863, 364; (k) Lundström,
L.; Elmquist, A.; Bartfai, T.; Langel, U. Neuromolecular Med. 2005, 7, 157; (l)
Bartfai, T.; Hokfelt, T.; Langel, U. Crit. Rev. Neurobiol. 1993, 7, 229.
6. (a) Saar, K.; Mazarati, A. M.; Mahlapuu, R.; Hallnemo, G.; Soomets, U.; Kilk, K.;
Hellberg, S.; Pooga, M.; Tolf, B. –R.; Shi, T. S.; Hökfelt, T.; Wasterlain, C.; Bartfai,
T.; Langel, Ü. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 7136; (b) Sollenberg, U.;
Bartfai, T.; Langel, U. Neuropeptides 2005, 39, 161.
N4-(3-fluoro-2-methylphenyl)-N2-(4-methoxyphenyl)-6-(piperidin-1-yl)pyrimidi
ne-2,4-diamine [6ee (CYM2248)]: 1H NMR (300 MHz, CDCl3) d 7.35 (d, J = 8.2 Hz,
2H), 7.07 (dt, J = 14.7, 7.7 Hz, 2H), 6.88 (br s, 1H), 6.76 (dd, J = 16.2, 8.3 Hz, 3H),
6.40 (br s, 1H), 5.13 (s, 1H), 3.69 (s, 3H), 3.38 (br s, 4H), 2.05 (s, 3H), 1.48 (br s,
6H); 13C NMR (CDCl3, 75 MHz)
d 164.03, 163.45, 162.55, 160.22, 159.78,
154.71, 139.58 (d, J = 6.3 Hz), 133.87, 126.78 (d, J = 10.1 Hz), 121.27, 120.27
(d, J = 3.0 Hz), 119.98 (d, J = 17.5 Hz), 113.96, 111.65 (d, J = 5.1 Hz), 75.33,
55.62, 45.51, 25.63, 24.86, 9.74 (d, J = 5.1 Hz). ESI-MS (m/z): calcd for
C
23H26FN5O 407.48, found 408.56 [M+H]+. LC–MS >98%, tR = 3.28 min, m/z
408 [M+H]+.
N2-(4-methoxyphenyl)-6-(piperidin-1-yl)-N4-(3-(trifluoromethoxy)phenyl)pyrimi-
7. Mazarati, A. M.; Hohmann, J. G.; Bacon, A.; Liu, H.; Sankar, R.; Steiner, R. A.;
Wynick, D.; Wasterlain, C. G. J. Neurosci. 2000, 20, 6276.
dine-2,4-diamine 6w [(CYM2229)]: 1H NMR (300 MHz, CDCl3)
d 7.37 (d,
J = 8.3 Hz, 2H), 7.24 (s, 1H), 7.18 (d, J = 7.0 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H),
6.77 (d, J = 7.2 Hz, 3H), 6.61 (br s, 1H), 5.43 (s, 1H), 3.71 (s, 3H), 3.44 (br s, 4 H),
1.52 (br s, 6H), 1.18 (s, 1H); 13C NMR (CDCl3, 75 MHz) d 16 3.95, 161.28, 159.90,
155.02, 149.80, 141.67, 133.58, 130.19, 121.63, 118.85, 114.74, 114.04, 113.34,
100.18, 76.30, 55.63, 45.57, 25.64, 24.89. ESI-MS (m/z): calcd. for C23H24F3N5O2
459.46, found 469.56 [M+H]+. LC–MS >98%, tR = 2.07 min, m/z 470 [M+H]+.
N4-(3-fluoro-4-methoxyphenyl)-N2-(4-methoxyphenyl)-6-(piperidin-1-
8. Wang, S.; Hashemi, T.; Fried, S.; Clemmons, A. L.; Hawes, B. E. Biochemistry
1998, 37, 6711.
9. (a) O’Donnell, D.; Ahmad, S.; Wahlestedt, C.; Walker, P. J. Comp. Neurol. 1999,
409, 469; (b) Hohmann, J. G.; Jureus, A.; Teklemichael, D. N.; Matsumoto, A. M.;
Clifton, D. K.; Steiner, R. A. Neuroscience 2003, 117, 105.
10. Bulaj, G.; Green, B. R.; Lee, H. –K.; Robertson, C. R.; White, K.; Zhang, L.;
Sochanska, M.; Flynn, S. P.; Scholl, E. A.; Pruess, T. H.; Smith, M. D.; White, H. S.
J. Med. Chem. 2008, 51, 8038.
11. (a) Bartfai, T.; Lu, X.; Badie-Mahdavi, H.; Barr, A. M.; Mazarati, A.; Hua, X. –Y.;
Yaksh, T.; Haberhauer, G.; Ceide, S. C.; Trembleau, L.; Somogyi, L.; Kröck, L.;
Rebek, J., Jr. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 10470; (b) Mazarati, A.; Lu, X.;
Kilk, K.; Langel, U.; Wasterlain, C.; Bartfai, T. Eur. J. Neurosci. 2004, 19, 3235.
12. (a) Robertson, C. R.; Scholl, E. A.; Pruess, T. H.; Green, B. R.; White, H. S.; Bulaj,
G. J. Med. Chem. 2010, 53, 1871; (b) White, H. S.; Scholl, E. A.; Klein, B. D.; Flynn,
S. P.; Pruess, T. H.; Green, B. R.; Zhang, L.; Bulaj, G. Neurotherapeutics 2009, 6,
372; (c) Zhang, L.; Robertson, C. R.; Green, B. R.; Pruess, T. H.; White, H. S.;
Bulaj, G. J. Med. Chem. 2009, 52, 1310.
13. Lu, X.; Lundström, L.; Langel, U.; Bartfai, T. Neuropeptides 2005, 39, 143.
14. Lu, X.; Roberts, E.; Xia, F.; Sanchez-Alavez, M.; Liu, T.; Baldwin, R.; Wu, S.;
Chang, J.; Wasterlain, C. G.; Bartfai, T. Proc. Natl. Acad. Sci. U.S.A. 2010, 107,
15229.
15. Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338.
16. Schomaker, J. M.; Delia, T. J. J. Heterocycl. Chem. 2000, 37, 1457.
17. General synthesis of 2,4,6-triaminopyrimidine compounds: Step-1: 4-amino-2,6-
dichloro pyrimidine: 2,4,6-trichloro pyrimidine (1.0 mmol) in ethanol (5 mL)
was treated with an aromatic amine (1.1 mmol) in the presence of Na2CO3
(1.1 mmol) at rt. The mixture was stirred at reflux for 2–4 h until completion of
yl)pyrimidine-2,4-diamine [6bb (CYM2233)]: 1H NMR (300 MHz, CDCl3) d 7.35 (d,
J = 8.0 Hz, 2H), 7.07 (d, J = 12.8 Hz, 1H), 6.88 (s, 1H), 6.85–6.67 (m, 4H), 5.57 (s,
1H), 5.26 (s, 1H), 3.77 (s, 3H), 3.68 (s, 3H), 3.39 (br s, 4H), 1.49 (br s, 6H); 13C
NMR (CDCl3, 75 MHz) d 163.98, 162.39, 159.86, 154.74, 153.96, 150.71, 144.08
(d), 133.83, 133.36 (d), 121.31, 118.10, 113.96, 111.56, 111.28, 75.19, 56.71,
55.61, 45.50, 25.61, 24.85. ESI-MS (m/z): calcd for C23H26FN5O2 423.48, found
424.56 [M+H]+. LC–MS >98%, tR = 1.94 min, m/z 425 [M+H]+.
N4-(3-(difluoromethoxy)phenyl)-N2-(4-methoxyphenyl)-6-(piperidin-1-yl)pyrim-
idine-2,4-diamine. [6z (CYM2231)]: 1H NMR (300 MHz, CDCl3)
d 7.35 (d,
J = 8.8 Hz, 2H), 7.24–7.10 (m, 2H), 6.96 (d, J = 8.0 Hz, 1H), 6.88 (s, 1H), 6.75 (d,
J = 8.8 Hz, 2H), 6.66 (d, J = 9.0 Hz, 1H), 6.39 (s, 1H), 5.43 (s, 1H), 3.70 (s, 3H), 3.43
(br s, 4H), 1.51 (br s, 6H); 13C NMR (CDCl3, 75 MHz) d 163.93, 161.38, 159.86,
154.92, 151.88, 141.72, 133.65, 130.18, 121.57, 117.51, 116.03, 113.98, 113.10,
111.84, 76.31, 55.60, 45.54, 25.62, 24.87. ESI-MS (m/z): calcd for C23H25F2N5O2
441.47, found 442.56 [M+H]+. LC–MS >98%, tR = 2.12 min, m/z 443 [M+H]+.
19. In the full curve binding, compounds were tested in concentrations between
10 nM and 100 lM, and a galanin control was always included in each plate.
An IC50 is calculated if the lowest portion of the nonlinear regression 1 site
competition curve is below 35% of the total binding. Ligand competition
binding of 125I porcine galanin to the membrane preparations was performed