M. A. Fascione et al. / Carbohydrate Research 348 (2012) 6–13
11
4), 4.69 (t, 1H, J 3.4 Hz, RC@CHCH2CH2CH2), 4.63 (d, 1H, J1,2 10.3 Hz,
(d, 1H, JSCHeq,SCHax 13.7 Hz, SCHax), 2.08 (s, 3H, C(O)CH3), 2.06 (s,
3H, C(O)CH3), 2.03 (s, 3H, C(O)CH3), 1.56 (m, 6H, H-b, H-b0, H-c,
H-c0, H-d, H-d0); 13C NMR (75 MHz, CDCl3): dC 171.2, 170.6, 169.9
(C(O)CH3), 93.1 (C-e), 77.2 (C-1), 76.2 (C-5), 73.4 (C-4), 72.0 (C-2),
68.8 (C-3), 62.4 (C-6), 61.6 (C-a), 37.6 (SCH2), 34.5 (C-d), 25.1 (C-
b), 21.2 (C(O)CH3), 21.1 (C(O)CH3), 21.0 (C(O)CH3), 19.0 (C-c); HRE-
SIMS: found [M+Na]+ 441.1190 C18H26NaO9S requires 441.1195.
0
0
H-1), 4.25 (dd, 1H, J5,6 5.1 Hz, J6,6 11.9 Hz, H-6), 4.14 (dd, 1H, J5,6
5.1 Hz, J6,6 11.9 Hz, H-60), 4.03 (m, 2H, RC@CHCH2CH2CH2), 3.67
(m, 1H, H-5), 3.33 (d, 1H, J 13.6 Hz, SCH2), 3.13 (d, 1H, J 13.6 Hz,
0
0
SCH2 ), 2.08 (s, 3H, C(O)CH3), 2.05 (s, 3H, C(O)CH3), 2.02 (s, 3H,
C(O)CH3), 2.01 (s, 3H, C(O)CH3), 2.07 (dd, 2H, J 3.4 Hz, J 5.1 Hz,
RC@CHCH2CH2CH2), 1.82 (dd, 2H,
J
5.1,
J
6.0 Hz, RC@
CHCH2CH2CH2); 13C NMR (75 MHz, CDCl3): dC 171.0, 170.7, 169.8
(C(O)CH3), 149.9 (RC@CHCH2CH2CH2), 99.7 (RC@CHCH2CH2CH2),
82.8 (C-1), 76.1 (C-5), 74.4 (C-4), 70.4 (C-2), 68.7 (C-3), 66.9
(RC@CHCH2CH2CH2), 62.6 (C-6), 33.6 (SCH2), 22.4 (RC@
CHCH2CH2CH2), 22.4 (C(O)CH3), 21.4 (C(O)CH3), 20.9 (C(O)CH3),
20.7 (C(O)CH3), 19.5 (RC@CHCH2CH2CH2); HRESIMS: Found
3.6. (6S)-1,7-Dioxa-(3,4,6-tri-O-acetyl-1,2-dideoxy-b-D-
glucopyranoso)-4-thia-[1,2-b]-spiro[6.6]undecane (R/S)-S-oxide
(13)
A solution of m-CPBA (250 mg, 1.26 mmol) in CH2Cl2 (1 mL) was
added to a solution of (6S)-1,7-dioxa-(3,4,6-tri-O-acetyl-1,2-dide-
[M+H]+ 461.1476 C20H29O10
S
requires 461.1481, [M+Na]+
483.1295 C20H29NaO10S requires 483.1301.
oxy-b-
D
-glucopyranoso)-4-thia-[1,2-b]-spiro[6.6]undecane
(11)
(500 mg, 1.20 mmol) in CH2Cl2 (12 mL) and stirred for 10 min at
ꢂ78 °C. The reaction was then quenched with aq NaHCO3
(25 mL) and diluted with CH2Cl2 (50 mL), and the organic phase
was separated and concentrated to afford a crude syrup. The crude
syrup was then purified by flash column chromatography (silica
gel; 98:2 (v/v) CH2Cl2–MeOH) to afford (6S)-1,7-dioxa-(3,4,6-tri-
3.4. (6S)-1,7-Dioxa-4-thia-(1,2-dideoxy-b-
b]-spiro[6.6]undecane (10)
D-glucopyranoso)[1,2-
A solution of NaOMe (380 mg, 6.95 mmol) in anhydrous MeOH
(10 mL) was added to a solution of 3,4-dihydro-2H-pyran-6-yl)-
methyl 2,3,4,6-tetra-O-acetyl-1-thio-b-
D
-glucopyranoside (9) (4.0
O-acetyl-1,2-dideoxy-b-D-glucopyranoso)-4-thia-[1,2-b]-spiro[6.6]
g, 8.69 mmol) in anhydrous MeOH (100 mL) and stirred overnight.
The reaction mixture was then neutralised with Amberlite IRC H+
resin and concentrated to leave a crude oil. The resulting oil was
redissolved in chloroform (50 mL) and acidified with p-TSA
(800 mg, 4.37 mmol) and left to stir for 45 min. The reaction mix-
ture was then neutralised with Et3N and concentrated to afford a
crude oil. The crude oil was purified by flash chromatography (sil-
ica gel; 9:1 (v/v) CH2Cl2–MeOH) to afford (6S)-1,7-dioxa-4-thia-
undecane (R/S)-S-oxide (13) (480 g, 93%, dr: 97:3) as an amorphous
solid; Rf 0.66 (9:1 (v/v) CH2Cl2–MeOH); ½a D21
ꢅ
+6.5 (c 0.4, CHCl3);
-glucopy-
(6S)-1,7-dioxa-4-thia-(3,4,6-tri-O-acetyl-1,2-dideoxy-b-
D
ranoso)[1,2-b]-spiro[6.6]undecane (R)-S-oxide (13-R): FTIR (mmax
/
cmꢂ1) 1740 (C@O), 2940 (C–H); 1H NMR (500 MHz, CDCl3): dH
5.23 (dd, 1H, J2,3 9.4 Hz, J3,4 9.4 Hz, H-3), 5.14 (dd, 1H, J3,4 9.4 Hz,
0
J4,5 9.4 Hz, H-4), 4.35 (dd, 1H, J5,6 4.4, J6,6 12.6 Hz, H-6), 4.22
(d, 1H, J1,2 10.2 Hz, H-1), 4.19 (dd, 1H, J5,6 2.4, J6,6 12.6 Hz, H-60),
3.81 (m, 1H, H-5), 3.72 (dd, 1H, J1,2 10.2 Hz, J2,3 9.4 Hz, H-2), 3.68–
3.65 (m, 1H, H-a), 3.54 (d, 1H, JSCHeq,SCHax 12.6 Hz, SCHeq), 3.50–
3.46 (m, 1H, H-a0), 2.77 (d, 1H, JSCHeq,SCHax 12.6 Hz, SCHax), 2.08
(s, 3H, C(O)CH3), 2.06 (s, 3H, C(O)CH3), 2.05 (s, 3H, C(O)CH3), 1.58
(m, 6H, H-b, H-b0, H-c, H-c0, H-d, H-d0); 13C NMR (75 MHz, CDCl3):
dC 171.2, 170.7, 169.9 (C(O)CH3), 98.6 (C-e), 95.9 (C-1), 77.4 (C-3),
73.3 (C-5), 67.9 (C-4), 67.5 (C-2), 61.9 (C-6), 60.2 (SCH2), 33.9 (C-
b), 24.5 (C-d), 24.5 (C(O)CH3), 21.1 (C(O)CH3), 21.1 (C(O)CH3),
18.7 (C-c), 60.2 (C-a); HRESIMS: found [M+Na]+ 457.1139
0
0
(1,2-dideoxy-b-
(1.5 g, 60%) as a colourless foam; Rf 0.24 (9:1 (v/v) CH2Cl2–MeOH);
+19.0 (c 2, CHCl3); FTIR (
max/cmꢂ1) 3391 (OH), 2941 (C–H);
1H NMR (500 MHz, CDCl3): dH 4.39 (d, 1H, J1,2 8.5 Hz, H-1), 3.93
D-glucopyranoso)[1,2-b]-spiro[6.6]undecane (10)
½
a 2D1
ꢅ
m
0
0
0
(dd, 1H, J5,6 1 Hz, J6,6 12.8 Hz, H-6), 3.81 (dd, 1H, J5,6 1 Hz, J6,6
12.8 Hz, H-60), 3.76 (m, 2H, H-a, H-a0), 3.74 (m, 1H, H-4), 3.69
(dd, 1H, J1,2 8.5 Hz, J2,3 9.4 Hz, H-2), 3.59 (dd, 1H, J2,3 9.4 Hz, J3,4
9.4 Hz, H-3), 3.48 (m, 1H, H-5), 2.94 (d, 1H, JSCHeq,SCHax 13.6 Hz,
SCHeq), 2.67 (d, 1H, JSCHeq,SCHax 13.6 Hz, SCHax), 1.81 (m, 2H, H-b,
H-b0), 1.65 (m, 2H, H-c, H-c0), 1.53 (m, 2H, H-d, H-d0); 13C NMR
(75 MHz, CDCl3): dC 98.6 (C-e), 80.6 (C-1), 75.9 (C-5), 75.8 (C-4),
73.8 (C-2), 70.9 (C-3), 62.6 (C-6), 61.7 (C-a), 37.7 (SCH2), 34.6 (C-
d), 25.1 (C-b), 19.2 (C-c); HRESIMS: found [M+Na]+ 315.0873
C18H26NaO10S requires 457.1144; (6S)-1,7-dioxa-(3,4,6-tri-O-acet-
yl-1,2-dideoxy-b- -glucopyranoso)-4-thia-[1,2-b]-spiro[6.6]unde-
D
cane (S)-S-oxide (13-S): mp: 194.0–196.1 °C (from hexane–EtOAc):
1H NMR (500 MHz, CDCl3): dH 5.36 (dd, 1H, J2,3 9.6 Hz, J3,4 9.6 Hz,
H-3), 5.16 (dd, 1H, J3,4 9.0 Hz, J4,5 9.0 Hz, H-4), 4.27 (dd, 1H, J5,6
C12H20NaO6S requires 315.0878.
0
6.4, J6,6 13.7 Hz, H-6), 4.09 (d, 1H, J1,2 9.9 Hz, H-1), 4.27 (dd, 1H,
J5,6 6.4, J6,6 13.7 Hz, H-60), 3.89 (m, 1H, H-5), 4.72 (dd, 1H, J1,2
9.9 Hz, J2,3 9.6 Hz, H-2), 3.68–3.65 (m, 1H, H-a), 3.50–3.46 (m, 1H,
H-a0), 3.26 (d, 1H, JSCHeq,SCHax 14.9 Hz, SCHeq), 2.44 (d, 1H,
JSCHeq,SCHax 14.9 Hz, SCHax), 2.08 (s, 3H, C(O)CH3), 2.06 (s, 3H,
C(O)CH3), 2.05 (s, 3H, C(O)CH3), 1.80 (m, 6H, H-b, H-b0, H-c, H-c0,
H-d, H-d0).
0
0
3.5. (6S)-1,7-Dioxa-(3,4,6-tri-O-acetyl-1,2-dideoxy-b-
glucopyranoso)-4-thia-[1,2-b]-spiro[6.6]undecane (11)
D
-
Et3N (1.18 mL, 8.48 mmol), Ac2O (810
DMAP (5 mg, 0.05 mmol), were added to a solution of (6S)-1,7-
dioxa-4-thia-(1,2-dideoxy-b- -glucopyranoso)[1,2-b]-spiro[6.6]
lL, 8.48 mmol) and
D
undecane (10) (0.75 g, 2.57 mmol) in CH2Cl2 (50 mL). The reaction
mixture was left to stir for 1 h, then it was quenched with aq NaH-
CO3 (25 mL). The organic layer was separated, dried (MgSO4) and
concentrated to leave a crude solid. The crude solid was purified
by flash column chromatography (silica gel; 1:1 (v/v) hexane–
EtOAc) to afford (6S)-1,7-dioxa-3,4,6-tri-O-acetyl-1,2-dideoxy-b-
3.7. (6S)-1,7-Dioxa-(3,4,6-tri-O-benzyl-1,2-dideoxy-b-D-
glucopyranoso)-4-thia-[1,2-b]-spiro[6.6]undecane (R)-S-oxide
(14-R)
NaH (60% dispersion in oil, 107 mg, 4.45 mmol) was added in
D
-glucopyranoso)-4-thia-([1,2-b]-spiro[6.6]undecane (11) (1.07 g,
portions to a stirred solution of (6S)-1,7-dioxa-(1,2-dideoxy-b-D-
100%) as colourless plates mp: 159.0–160.3 °C (from methanol);
glucopyranoso)-4-thia-[1,2-b]-spiro[6.6]undecane (10) (420 mg,
1.48 mmol) in N,N-dimethylformamide (10 mL) at 0 °C, and the
mixture was stirred for 30 min while H2(g) evolved. Benzyl bro-
Rf 0.27 (2:1 (v/v) hexane–EtOAc); ½a D21
ꢅ
+16.9 (c 2.6, CHCl3); FTIR
(m
max/cmꢂ1) 1747 (C@O), 2946 (C–H); 1H NMR (400 MHz, CDCl3):
dH 5.14 (dd, 1H, J2,3 9.3 Hz, J3,4 9.3 Hz, H-3), 5.12 (dd, 1H, J3,4
mide (616 lL, 5.18 mmol) was then added dropwise at 0 °C, and
9.3 Hz, J4,5 9.3 Hz, H-4), 4.40 (d, 1H, J1,2 9.3 Hz, H-1), 4.22 (dd, 1H,
the reaction mixture stirred for a further 3 h. The reaction mixture
was quenched with MeOH (10 mL) and concentrated. The crude so-
lid was then redissolved in CH2Cl2 (20 mL) and washed with aq
NaCl (2 ꢄ 20 mL), dried (MgSO4) and concentrated to leave a crude
J5,6 4.6, J6,6 12.3 Hz, H-6), 4.13 (dd, 1H, J5,6 2.3, J6,6 12.3 Hz, H-60),
3.91 (dd, 1H, J1,2 9.3 Hz, J2,3 9.3 Hz, H-2), 3.75 (m, 1H, H-5), 3.65
(m, 2H, H-a, H-a0), 2.95 (d, 1H, JSCHeq,SCHax 13.7 Hz, SCHeq), 2.66
0
0
0