1212
S. Lu et al. / Tetrahedron Letters 53 (2012) 1210–1213
functional groups in one step. Further extension of this method
to the synthesis of various functionalized fullerenes and applica-
tion to photovoltaic cells are in progress.
Pd(0)
O
CN
3a
O
2
Acknowledgments
CO2
This work was supported by World Premier International Re-
search Center Initiative (WPI), MEXT, Japan. S.L. acknowledges the
support of the China Scholarship Council (CSC).
H2C
CN
C
N
C
Pd
A'
CH2
P
CN
P
P
N
P
P
Pd
Pd
Ph
CN
B
P
Supplementary data
A
Supplementary data associated with this article can be found, in
CN
CN
References and notes
Ph
1a
1. For reviews, see: (a) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127–
2198; (b) Patil, N. T.; Yamamoto, Y. Synlett 2007, 1994–2005; (c) Weaver, J. D.;
Recio, A., III; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846–1913.
2. (a) Nakamura, H.; Shim, J. G.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 8113–
8114; (b) Nakamura, H.; Aoyagi, K.; Shim, J. G.; Yamamoto, Y. J. Am. Chem. Soc.
2001, 123, 372–377; (c) George, S. C.; John, J.; Anas, S.; John, J.; Yamamoto, Y.;
Suresh, E.; Radhakrishnan, K. V. Eur. J. Org. Chem. 2010, 5489–5497; (d) George,
S. C.; Thulasi, S.; Radhakrishnan, K. V.; Yamamoto, Y. Org. Lett. 2011, 13, 4984–
4987; (e) Shim, J. G.; Yamamoto, Y. J. Org. Chem. 1998, 63, 3067–3071; (f)
Nakamura, H.; Sekido, M.; Ito, M.; Yamamoto, Y. J. Am. Chem. Soc. 1998, 120,
6838–6839; (g) Nakamura, H.; Shibata, H.; Yamamoto, Y. Tetrahedron Lett. 2000,
41, 2911–2914; (h) Aoyagi, K.; Nakamura, H.; Yamamoto, Y. J. Org. Chem. 2002,
67, 5977–5980; (i) Patil, N. T.; Huo, Z.; Yamamoto, Y. J. Org. Chem. 2006, 71,
2503–2506; (j) Wang, C.; Tunge, J. A. J. Am. Chem. Soc. 2008, 130, 8118–8119; (k)
Jeganmohan, M.; Shanmugasundaram, M.; Cheng, C.-H. Org. Lett. 2003, 5, 881–
884; (l) Shim, J. G.; Nakamura, H.; Yamamoto, Y. J. Org. Chem. 1998, 63, 8470–
8474; (m) Streuff, J.; White, D. E.; Virgil, S. C.; Stoltz, B. M. Nat. Chem. 2010, 2,
192–196; (n) Patil, N. T.; Huo, Z.; Yamamoto, Y. J. Org. Chem. 2006, 71, 6991–
6995; (o) Yeagley, A. A.; Lowder, M. A.; Chruma, J. J. Org. Lett. 2009, 11, 4022–
4025.
Scheme 1. A plausible reaction mechanism.
forms
with
gas. The b-nucleophilic addition of acetonitrile to ethylidene malon-
onitrile 1a gives the ion-paired ( -allyl)palladium intermediate B.
p
r
-allylpalladium complex A0, which should be in equilibrium
-allylpalladium complex A, along with the exclusion of CO2
p
Reductive elimination of B produces the b-acetonitrile-
a-allyl
adduct 3a.
Next, the present methodology was successfully applied to the
regioselective synthesis of a 1,4-di(organo)fullerene which has
attracted much attention as potentially useful n-type materials in
organic photovoltaic applications.9 Unfortunately, the reaction of
C60 with cyanoacetic acid allyl ester (2) in the presence of the
Pd2(dba)3ꢀCHCl3/BINAP catalyst system in ortho-dichlorobenzene
(ODCB) afforded only a trace amount of the corresponding prod-
ucts 4a and 4b, and C60 was recovered mainly. After a brief optimi-
zation of the palladium catalyst, we found that the reaction
proceeded smoothly in the presence of Pd(PPh3)4 (1 mol %) to give
an 87:13 mixture of the 1,4-disubstituted product 4a and 1,2-
disubstituted product 4b in 31% yield along with the recovery of
C60 in 40% yield (4a was obtained as the major product) (Eq. 2).
It should be noted that in contrast to the present acetonitrile/ally-
lation, our previously reported acetonation/allylation method2l
was not applicable for the functionalization of C60: Under similar
conditions to Eq. 2, the reaction of C60 with allyl acetoacetate gave
3. For selected reviews, see: (a) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103,
2921–2944; (b) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395–422.
4. For pioneering works, see: (a) Shimizu, I.; Yamada, T.; Tsuji, J. Tetrahedron Lett.
1980, 21, 3199–3202; (b) Shimizu, I.; Tsuji, J. J. Am. Chem. Soc. 1982, 104, 5844–
5846; (c) Tsuda, T.; Chujo, Y.; Nishi, S.-i.; Tawara, K.; Saegusa, T. J. Am. Chem. Soc.
1980, 102, 6381–6384; (d) Trost, B. M. Tetrahedron 1977, 33, 2615–2649; (e)
Trost, B. M.; Hung, M. H. J. Am. Chem. Soc. 1984, 106, 6837–6839.
5. Recio, A., III; Tunge, J. A. Org. Lett. 2009, 11, 5630–5633.
6. (a) Lu, S.; Jin, T.; Bao, M.; Yamamoto, Y. J. Am. Chem. Soc. 2011, 133, 12842–
12848; (b) Lu, S.; Jin, T.; Kwon, E.; Bao, M.; Yamamoto, Y. Angew. Chem. Int. Ed.
7. For selected transition metal catalyzed functionalization of fullerenes, see: (a)
Hsiao, T. Y.; Santhosh, K. C.; Liou, K. F.; Cheng, C. H. J. Am. Chem. Soc. 1998, 120,
12232–12236; (b) Gan, L.; Huang, S.; Zhang, X.; Zhang, A.; Cheng, B.; Cheng, H.;
Li, X.; Shang, G. J. Am. Chem. Soc. 2002, 124, 13384–13385; (c) Martín, N.; Altable,
M.; Filippone, S.; Martín-Domenech, A.; Poater, A.; Solà, M. Chem. Eur. J. 2005, 11,
2716–2729; (d) Matsuo, Y.; Iwashita, A.; Nakamura, E. Chem. Lett. 2006, 35, 858–
859; (e) Nambo, M.; Noyori, R.; Itami, K. J. Am. Chem. Soc. 2007, 129, 8080–8081;
(f) Mori, S.; Nambo, M.; Chi, L. C.; Bouffard, J.; Itami, K. Org. Lett. 2008, 10, 4609–
4612; (g) Nambo, M.; Wakamiya, A.; Yamaguchi, S.; Itami, K. J. Am. Chem. Soc.
2009, 131, 15112–15113; (h) Nambo, M.; Itami, K. Chem. Eur. J. 2009, 15, 4760–
4764; (i) Zhu, B.; Wang, G. W. J. Org. Chem. 2009, 74, 4426–4428; (j) Zhu, B.;
Wang, G. W. Org. Lett. 2009, 11, 4334–4337; (k) Filippone, S.; Maroto, E. E.;
Martín-Domenech, A.; Suarez, M.; Martín, N. Nat. Chem. 2009, 1, 578–582; (l)
Xiao, Z.; Matsuo, Y.; Nakamura, E. J. Am. Chem. Soc. 2010, 132, 12234–12236.
a mixture of multi-adducts and a small amount of recovered C60
In conclusion, we have developed a novel palladium-catalyzed
b-acetonitrile- -allyl addition reaction of active alkenes with
.
a
cyanoacetic acid allyl ester. This method has provided a new ap-
proach for the construction of an all-carbon quarternary carbon
adjacent to a tertiary carbon. The present methodology was
successfully applied to the unsymmetric bisfunctionalization of
C60 through the selective 1,4-addition of two different organic
CN
+
CN
1 mol% Pd(PPh3)4
ODCB, 90 °C, 3 h
O
C60
CN
+
O
2
4a:4b
= 87:13
31%;
recovery of C60
40%
4a
4b
1,4-adduct
1,2-adduct