ORGANIC
LETTERS
2012
Vol. 14, No. 5
1334–1337
Ambient Schmittel Cyclization Promoted
by Chemoselective Triazole-Gold Catalyst
Qiaoyi Wang, Siddhita Aparaj, Novruz G. Akhmedov, Jeffrey L. Petersen, and
Xiaodong Shi*
C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown,
West Virginia 26506, United States
Received January 27, 2012
ABSTRACT
The Schmittel cyclization was achieved at room temperature through triazoleꢀgold (TAꢀAu) catalyzed propargyl vinyl ether rearrangement.
Other tested [LꢀAu]þ catalysts gave complex reaction mixtures under identical conditions with no desired products observed. Importantly,
because of the employment of mild conditions, sterically hindered groups (such as t-Bu) on allene termini were no longer required, which allowed
successful synthesis of previously challenging substrates.
Over the past several decades, the thermal cyclo-
aromatizations of enediyne (Bergman and Pascal)1 and
enyneꢀallene (Myers-Saito and Schmittel)2 have attracted
considerable attention due to their fundamentally intri-
guing mechanisms and the crucial biological applications.3
Experimental and computational mechanistic investigations
suggested that these transformations proceed via diradical
intermediates.4 Two different cyclization paths have been
disclosed for the enyne-allene systems (Scheme 1): C2ꢀC7
and C2ꢀC6 cyclizations.
For the enyneꢀallene system, the formation of aroma-
ticity provides the driving force for the Myers-Saito
(C2ꢀC7) cyclization. The Schmittel (C2ꢀC6) path is also
energetically favored due to the carbon hybridization
conversion from sp to sp2. However, the C2ꢀC7 cycliza-
tionis generally preferredand appropriate substitutions on
alkyne termini are usually required for altering the regios-
electivity to C2ꢀC6 cyclization.5 Nevertheless, the ability
to construct 5-membered ring makes the Schmittel cycliza-
tion an interesting strategy for complex poly aromatic
structure construction.
(1) (a) Jones, R. R.; Bergman, R. G. J. Am. Chem. Soc. 1972, 94, 660–
661. (b) Bergman, R. G. Acc. Chem. Res. 1973, 6, 25–31. (c) Greer, E. M.;
Lavinda, O. J. Org. Chem. 2010, 75, 8650–8653. (d) Vavilala, C.; Byrne,
N.; Kraml, C. M.; Ho, D. M.; Pascal, R. A., Jr. J. Am. Chem. Soc. 2008,
130, 13549–13551.
(2) (a) Myers, A. G.; Kuo, E. Y.; Finney, N. S. J. Am. Chem. Soc.
1989, 111, 8057. (b) Myers, A. G.; Dragovich, P. S. J. Am. Chem. Soc.
1989, 111, 9130. (c) Nechab, M.; Campolo, D.; Maury, J.; Perfetti, P.;
Vanthuyne, N.; Siri, D.; Bertrand, M. P. J. Am. Chem. Soc. 2010, 132,
14742–14744. (d) Schmittel, M.; Strittmatter, M.; Kiau, S. Tetrahedron
Lett. 1995, 36, 4975–4978. (e) Schmittel, M.; Strittmatter, M.; Kiau, S.
Angew. Chem., Int. Ed. Engl. 1996, 35, 1843–1845. (f) Vavilala, C.; Bats,
J. W.; Schmittel, M. Synthesis 2010, 13, 2213–2222.
(3) (a) Nicolaou, K. C.; Dai, W. M. Angew. Chem., Int. Ed. Engl.
€
One particular intriguing transformation was the cas-
cade cyclization of aromatic substituted allenes, which was
1991, 30, 1387–1416. (b) Choi, T. A.; Czerwonka, R.; Frohner, W.;
€
Krahl, M. P.; Reddy, K. R.; Franzblau, S. G.; Knolker, H. J. Chem-
MedChem 2006, 1, 812–815. (c) Thevissen, K.; Marchand, A.; Chaltin,
P.; Meert, E. M. K.; Cammue, B. P. A Curr. Med. Chem. 2009, 16, 2205–
2211.
(5) (a) Gillmann, T.; lsen, T. H.; Massa, W.; Wocadlo, S. Synlett
1995, 1257–1259. (b) Garcia, J. G.; Ramos, B.; Pratt, L. M.; Rodriguez,
A. Tetrahedron Lett. 1995, 36, 7391–7394.
(6) Schmittel, M.; Mahajan, A. A.; Bucher, G. J. Am. Chem. Soc.
2005, 127, 5324–5325.
(4) (a) Alabugin, I. V.; Gilmore, K.; Patil, S.; Manoharan, M.;
Kovalenko, S. V.; Clark, R. J.; Ghiviriga, I. J. Am. Chem. Soc. 2008,
130, 11535–11545. (b) Sakai, S.; Nishitani, M. J. Phys. Chem. A 2010,
114, 11807–11813. (c) Prall, M.; Wittkopp, A.; Schreiner, P. R. J. Phys.
Chem. A 2001, 105, 9265–9274. (d) Sakai, S.; Nishitani, M. J. Phys.
Chem. A 2010, 114, 11807–11813. (e) Chen, H. T.; Chen, H. L.; Ho, J. J.
J. Phys. Org. Chem. 2010, 23, 134–140.
(7) Zhang, Y.; Petersen, J. L.; Wang, K. K. Tetrahedron 2008, 64,
1285–1293.
r
10.1021/ol300227a
Published on Web 02/22/2012
2012 American Chemical Society