D. Tzimopoulos et al. / Inorganica Chimica Acta 383 (2012) 105–111
111
[6] J.R. Khusnutdinova, N.P. Rath, L.M. Mirica, J. Am. Chem. Soc. 132 (2010) 7303.
[7] T. Ikariya, I.D. Gridnev, Top. Catal. 53 (2010) 894.
[8] H.N.C. Wong, M.-Y. Hon, C.-W. Tse, Y.-C. Yip, J. Tanko, T. Hudlicky, Chem. Rev.
89 (1989) 165.
[9] A. Caballero, A. Prieto, M.M. Díaz-Requejo, P.J. Pérez, Eur. J. Inorg. Chem. (2009)
1137.
iodine. Probably, taking into account the activity of the ionic spe-
cies 4, and the relative strength of the Cu–X bonds (Cl < Br < I), a
prerequisite in order to have the catalytic active species is the dis-
sociation of the halide ion from the copper centers.
To prove this assumption, we performed a catalytic run in the
presence of exogenous chloride anions (entry 5). In fact, when
ethyl diazoacetate was added to a CH2Cl2 solution containing sty-
rene, complex 4 as catalyst and an equivalent (with respect to me-
tal) of benzyltriethylamonium chloride, no formation of
cyclopropanation products was detected even after a long reaction
time (48 h). This outcome corroborated the supposition that the
first step in the catalytic cycle involving the halide complexes is
most probably the anion dissociation, in this specific case pre-
vented by the presence of exogenous chloride.
We then decided to deepen the activity of the most active spe-
cies, 4, in the presence of different olefins as substrate. Thus, com-
plex 4 was tested as catalyst in the cyclopropanation of both
terminal (entries 6–8) and internal olefins (entries 9–11). The dia-
stereoselectivities reached using terminal olefins ranged from
[10] A. de Meijere, Chem. Rev. 103 (2003) 931.
[11] M.P. Doyle, A. McKervey, T. Ye, Modern Catalytic Methods for Organic
Synthesis with Diazo Compounds: From Cyclopropanes to Ylides, Wiley,
Chichester, 1998.
[12] T. Ye, A. McKervey, Chem. Rev. 94 (1994) 1091.
[13] A. Pfaltz, Cyclopropanation and C–H Insertion with Cu, in: E.N. Jacobsen, A.
Pfaltz, H. Yamamoto (Eds.), Comprehensive Asymmetric Catalysis, vol. 2,
Springer-Verlag, Berlin, 1999, pp. 513–538.
[14] W. Kirmse, Angew. Chem., Int. Ed. 42 (2003) 1088.
[15] T. Rasmussen, J.F. Jensen, N. Østergaard, D. Tanner, T. Ziegler, P. Norrby, Chem.
Eur. J. 8 (2002) 177.
[16] B.F. Straub, P. Hofmann, Angew. Chem., Int. Ed. Engl. 40 (2001) 1288.
[17] J.I. García, G. Jiménez-Osés, J.A. Mayoral, Chem. Eur. J. 17 (2011) 529.
[18] J.M. Fraile, J.I. García, A. Gissibl, J.A. Mayoral, E. Pires, O. Reiser, M. Roldán, I.
Villalba, Chem. Eur. J. 13 (2007) 8830.
[19] Q. Meng, M. Li, J. Mol. Struct. THEOCHEM 765 (2006) 13.
[20] J.A.S. Howell, Dalton Trans. (2006) 545.
[21] Q. Meng, M. Li, D. Tang, W. Shen, J. Zhang, J. Mol. Struct. THEOCHEM 711
(2004) 193.
[22] J.M. Fraile, J.I. García, V. Martínez-Merino, J.A. Mayoral, L. Salvatella, J. Am.
Chem. Soc. 123 (2001) 7616. and references therein.
44:56 cis:trans ratio in the case of
a-methylstyrene (entry 6) to
21:79 in the cyclopropanation of 1-octene. On the contrary, in
the case of an internal olefin like cyclohexene, species 4 showed
a higher diastereoselectivity and a 90:10 exo:endo ratio was
achieved. Unfortunately, with deactivated internal olefins such as
2-cyclohexen-1-one (entry 10) or trans-b-nitrostyrene (entry 11),
the cyclopropanation products were detected only in traces, thus
limiting the activity of 4 to not deactivated substrates.
[23] H. Fritschi, U. Leutenegger, A. Pfaltz, Helv. Chim. Acta 71 (1988) 1553.
[24] A.J. Burke, E. da Palma Carreiro, S. Chercheja, N.M.M. Moura, J.P.P. Ramalho, A.I.
Rodrigues, C.I.M. dos Santos, J. Organomet. Chem. 692 (2007) 4863.
[25] C. Ricardo, T. Pintauer, J. Organomet. Chem. 692 (2007) 5165.
[26] G. Chelucci, R.P. Thummel, Chem. Rev. 2002 (102) (2002) 3129.
[27] M.M. Diaz-Requejo, A. Caballero, T.R. Belderrain, M.C. Nicasio, S. Trofimenko,
P.J. Perez, J. Am. Chem. Soc. 124 (2002) 978.
[28] L. Beaufort, A. Demonceau, A.F. Noels, Tetrahedron 61 (2005) 9025.
[29] H. Suga, A. Kakehi, S. Ito, T. Ibata, T. Fudo, Y. Watanabe, Y. Kinoshita, Bull.
Chem. Soc. Jpn. 76 (2003) 189.
[30] G. Lesma, C. Cattenati, T. Pilati, A. Sacchetti, A. Silvani, Tetrahedron:
Asymmetry 18 (2007) 659.
4. Conclusion
[31] G.A. Ardizzoia, S. Brenna, F. Castelli, S. Galli, C. Marelli, N. Masciocchi, J.
Organomet. Chem. 693 (2008) 1870.
The neutral and one cationic dicopper(I) complexes with 3,5-
bis(pyridinylimino)benzoic acid are synthesized and their
structure studied. The proximity of the copper centers give rise
to asymmetric compounds as far as the orientation of the diimine
sites of the bridging ligand. The compounds are potential catalysts
in olefin cyclopropanation reactions and in fact they reveal overall
moderate-to-high yields when tested with styrene. The cationic
complex is the better and is further applicable to analogous reac-
tions where it proves to be efficient with internal olefins affording
a high diastereoselectivity of 90:10 with cyclohexene.
[32] A. Maspero, S. Brenna, S. Galli, A. Penoni, J. Organomet. Chem. 672 (2003) 123.
[33] G.A. Ardizzoia, S. Brenna, F. Castelli, S. Galli, Inorg. Chim. Acta 362 (2009) 3507.
[34] B.P. Buffin, E.B. Fonger, A. Kundu, Inorg. Chim. Acta 355 (2003) 340.
[35] P. Hemmerich, C. Sigwart, Experentia 19 (1963) 488.
[36] P.F. Barron, J.C. Dyason, L.M. Engelhardt, P.C. Healy, A.H. White, Aust. J. Chem.
38 (1985) 261.
[37] Oxford Diffraction, CRYSALIS CCD and RED, Ver. 1.171.33, Oxford Diffraction Ltd.,
Yarnton, Oxfordshire, UK, 2009.
[38] G.M. Sheldrick, Acta Crystallogr., Sect. A 64 (2008) 112.
[39] A.L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University,
Utrecht, The Netherlands, 2009.
[40] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
[41] D. Tzimopoulos, A. Czapik, M. Gdaniec, T. Bakas, A.A. Isab, A.-C. Varvogli, P.D.
Akrivos, J. Mol. Struct. 965 (2010) 56. and references therein.
[42] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Complexes, fourth ed., John Wiley & Sons, USA, 1992.
Appendix A. Supplementary material
[43] I. Wolfs, H.O. Desseyn, Appl. Spectrosc. 50 (1996) 1000.
[44] S. Shakhatreh, J. Mohanraj, A. Czapik, D. Tzimopoulos, S. Kotoulas, M. Gdaniec,
P.D. Akrivos, J. Mol. Struct. 1002 (2011) 51.
[45] A.M. Kantola, P. Lantto, J. Vaara, J. Jokisaari, Phys. Chem. Chem. Phys. 12 (2010)
2679.
[46] R.J. Abraham, M. Mobli, R.J. Smith, Magn. Reson. Chem. 42 (2004) 436.
[47] W.-F. Fu, X. Gan, J. Jiao, Y. Chen, M. Yuan, S.-M. Chi, M.-M. Yu, S.-X. Xiong, Inorg.
Chim. Acta 360 (2007) 2758. and references cited therein.
[48] N. Armaroli, G. Accorsi, F. Cardinali, A. Listorti, Top. Curr. Chem. 280 (2007) 69.
[49] J.J.P. Stewart, J. Mol. Mod. 13 (2007) 1173.
[50] MOPAC2009, James J.P. Stewart, Stewart Computational Chemistry, Colorado
[51] I. Shepperson, S. Quici, G. Pozzi, M. Nicoletti, D. O’Hagan, Eur. J. Org. Chem.
(2004) 4545.
CCDC 821562 and 821563 contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
ated with this article can be found, in the online version, at
References
[1] K. Huang, C.-L. Sun, Z.-J. Shi, Chem. Soc. Rev. 40 (2011) 2435.
[2] S. Dastgir, K.S. Coleman, M.L.H. Green, Dalton Trans. 40 (2011) 661.
[3] I.D. Gridnev, M. Watanabe, H. Wang, T. Ikariya, J. Am. Chem. Soc. 132 (2010)
16637.
[4] S. Dastgir, K.S. Coleman, A.R. Cowley, M.L.H. Green, Organometallics 29 (2010)
4858.
[52] M.P. Doyle, W. Hu, J. Org. Chem. 65 (2000) 8839.
[53] M.P. Doyle, V. Bagheri, T.J. Wandless, N.K. Harn, D.A. Brinker, C.T. Eagle, K.-L.
Loh, J. Am. Chem. Soc. 112 (1990) 1906.
[5] S. Reimann, J.-D. Grunwaldt, T. Mallat, A. Baiker, Chem. Eur. J. 16 (2010) 9658.