benzoic acids with aryl halides for biaryl synthesis,3 dec-
arboxylative couplings of heterocyclic carboxylic acids
with aryl halides have received much less attention. In
these instances, very few heterocycles were studied. Ste-
glich et al.4 reported a single example of an intramolecular
reaction of a pyrrole carboxylic acid with a bromoarene
within a total synthesis of lamellarin L. Forgione and
Bilodeau5 reported intermolecular decarboxylative cou-
plings of five-membered heterocyclic carboxylic acid sub-
strates (e.g., pyrrole, furan, oxazole, and thiazole) witharyl
bromides under palladium catalysis. Subsequently, other
groups have extended this method to substituted azoles,
including 2-aryloxazoles,6 3,4-dioxypyrrole,7 and benzo-
thiophene.8 Outside of these contributions, there have been
no focused efforts on heterocyclic carboxylic acid cou-
plings. Given the stability and high availability of hetero-
cyclic carboxylic acids relative to heterocyclic organo-
metallics, the reaction has great potential for the synthesis
of multiheteroaryl bioactive compounds.
In an ongoing medicinal chemistry program directed
toward hsp90,9 an exciting new target in cancer drug
discovery,10 we required the synthesis of 3-(hetero)aryl-4-
quinolinones 3. Traditional strategies to prepare such
molecules involve the construction of the heterocycle rings
by nontrivial multistep reaction sequences.11 Alternative
routes consist of the one pot tandem condensationÀ
cyclization of anilines with 3-(2-bromophenyl)-3-oxopro-
panal derivatives,12 or palladium-catalyzed Suzuki cross-
coupling of 3-halo-4-quinolinones withboronic acids.13 As
Table 1. Optimization of the Pd-Catalyzed Decarboxylative
Coupling of Quinolinone-3-carboxylic Acid 1a with 4-Iodoa-
nisole 2aa
ratiob
yield
(%)c
entry
[Pd]
ligand
PPh3
1a/3a/3b/4a
1
PdCl2
PdBr2
PdI2
7/56/29/8
0/64/32/5
20/47/22/11
40/42/15/2
0/17/0/83
12/20/68
42
52
39
À
2
PPh3
3
PPh3
4
Pd(OAc)2
PdBr2
PdBr2
PdBr2
PdBr2
PdBr2
PdBr2
PdBr2
PdBr2
PdBr2
PPh3
5
P(o-tolyl)3
P(c-hexyl)3
Xantphos
Xphos
À
6
À
7
2/51/43/4
0/36/0/64
1/40/0/59
1/15/0/84
0/82/13/5
0/85/10/5
7/72/16/5
49
À
8
9
Davephos
CyJohnphos
DPEphos
DPEphos
DPEphos
À
10
11
12
13
À
77
81d,e
60
(4) Peschko, C.; Winklhofer, C.; Steglich, W. Chem.;Eur. J. 2000, 6,
1147–1152.
a 1a (1 equiv), 4-iodoanisole (2 equiv), [Pd] (5 mol %), [L] (10 mol %),
Ag2CO3 (1 equiv), toluene/DMA (3.6/0.4 mL, 0.05M), 8 h at 150 °C.
b Ratio was determined by 1H NMR in the crude reaction mixture based
on the chemical shift of the proton signal (ppm) at the 2-position
(1a: δ = 8.79, 3a: δ = 7.79, 3b: δ = 7.83). c Isolated yields of 3a. d Heating
the reaction under microwave irradiation (MWI) for 1 h at 150 °C. e No
reaction occurred in the absence of PdBr2 or ligand and in the absence of
PdBr2 and ligand.
(5) Forgione, P.; Brochu, M.-C.; St-Onge, M.; Thesen, K. H.; Bailey,
M. D.; Bilodeau, F. J. Am. Chem. Soc. 2006, 128, 11350–11351.
(6) Zhang, F.; Greaney, M. F. Org. Lett. 2010, 12, 4745–4747.
(7) Arroyave, F. A.; Reynolds, J. R. Org. Lett. 2010, 12, 1328–1331.
(8) (a) Miyasaka, M.; Hirano, K.; Satoh, T.; Miura, M. Adv. Synth.
Catal. 2009, 351, 2683–2688. (b) Kissane, M.; McNamara, O. A.;
Mitchell, D.; Coppert, D. M.; Moynihan, H. A.; Lorenz, K. T.; Maguire,
A. R. Tetrahedron Lett. 2012, 53, 403–405.
(9) (a) Le Bras, G.; Radanyi, C.; Peyrat, J.-F.; Brion, J.-D.; Alami,
M.; Marsaud, V.; Stella, B.; Renoir, J.-M. J. Med. Chem. 2007, 50, 6189–
6200. (b) Radanyi, C.; Le Bras, G.; Messaoudi, S.; Bouclier, C.; Peyrat,
J.-F.; Brion, J.-D.; Marsaud, V.; Renoir, J.-M.; Alami, M. Bioorg. Med.
Chem. Lett. 2008, 18, 2495–2498. (c) Radanyi, C.; Le Bras, G.; Marsaud,
V.; Peyrat, J.-F.; Messaoudi, S.; Catelli, M. G.; Brion, J.-D.; Alami, M.;
Renoir, J.-M Cancer Lett. 2009, 274, 88–94. (d) Radanyi, C.; Le Bras, G.;
Bouclier, C.; Messaoudi, S.; Peyrat, J.-F.; Brion, J.-D.; Alami, M.;
Renoir, J.-M. Biochem. Biophys. Res. Commun. 2009, 379, 514–518.
(e) Audisio, D.; Messaoudi, S.; Ijjaali, I.; Dubus, E.; Petitet, F.; Peyrat,
J.-F.; Brion, J.-D.; Alami, M. Eur. J. Med. Chem. 2010, 45, 2000–2009.
(f) Audisio, D.; Messaoudi, S.; Ceigeikowski, L.; Peyrat, J.-F.; Brion,
J.-D.; Methy-Gonnot, D.; Radanyi, C.; Renoir, J.-M.; Alami, M.
ChemMedChem 2011, 6, 804–815.
(10) For reviews, see: (a) Messaoudi, S.; Peyrat, J.-F.; Brion, J.-B.;
Alami, M. Anti-Cancer Agents Med. Chem. 2008, 8, 761–782. (b)
Messaoudi, S.; Peyrat, J.-F.; Brion, J.-B.; Alami, M. Expert Opin. Ther.
Pat. 2011, 21, 1501–1542.
(11) Romek, A.; Opatz, T. Eur. J. Org. Chem. 2010, 5841–5849. (b)
G., H.; Jin, Ha, S.; K. Park, H. M.; Kang, B.; Kim, S. Y.; Kim, H.-D.;
Ryu, J.-H.; Jeon, R. Bioorg. Med. Chem. Lett. 2008, 18, 4092–4094. (b)
Xiao, Z.-P.; Xu, P.-c.; Lv, S.-P.; Zhu, T.-T.; Zhu, H.-L. ChemMedChem.
2008, 3, 1516–1519.
part of our continuing effort at the functionalization of
heterocycles via transition-metal-catalyzed reactions,14 we
decided to explore the ability of the 4-quinolinone 3-
carboxylic acids 1 to participate in metal-catalyzed decarbox-
ylative cross-coupling reactions with various (hetero)-
aryl halides. From a synthetic viewpoint, this coupling
should be the shortest and most efficient route to
(14) (a) Audisio, D.; Messaoudi, S.; Peyrat, J.-F.; Brion, J.-D.;
Alami, M. Tetrahedron Lett. 2007, 48, 6928–6932. (b) Messaoudi, S.;
Audisio, D.; Brion, J.-D.; Alami, M. Tetrahedron 2007, 63, 10202–
10210. (c) Audisio, D.; Messaoudi, S.; Peyrat, J.-F.; Brion, J.-D.; Alami,
M. J. Org. Chem. 2011, 76, 4995–5005. (d) Audisio, D.; Messaoudi, S.;
Brion, J.-D.; Alami, M. Eur. J. Org. Chem. 2010, 1046–1051. (e) Soussi,
M. A.; Audisio, D.; Messaoudi, S.; Provot, O.; Brion, J.-D.; Alami, M.
Eur. J. Org. Chem. 2011, 5077–5088. (f) Sahnoun, S.; Messaoudi, S.;
Peyrat, J.-F.; Brion, J. D.; Alami, M. Tetrahedron Lett. 2008, 49, 7279–
7283. (g) Sahnoun, S.; Messaoudi, S.; Brion, J. D.; Alami, M. Org.
Biomol. Chem. 2009, 7, 4271–4278. (h) Sahnoun, S.; Messaoudi, S.;
Brion, J. D.; Alami, M. Eur. J. Org. Chem. 2010, 6097–6102. (i)
Sahnoun, S.; Messaoudi, S.; Brion, J.-D.; Alami, M. ChemCatChem
2011, 3, 893–897. (j) Messaoudi, S.; Brion, J.-D.; Alami, M. Eur. J. Org.
Chem. 2010, 6495–6516. (k) Messaoudi, S.; Brion, J.-D.; Alami, M. Adv.
Synth. Catal. 2010, 352, 1677–1687. (l) Messaoudi, S.; Brion, J. D.;
Alami, M. Tetrahedron. Lett. 2011, 52, 2687–2691.
(12) Liu, Q. L.; Li, Q. L.; Fei, X. D.; Zhu, Y. M. ACS Comb. Sci.
2011, 13, 19–23.
(13) (a) Mugnaini, C.; Falciani, C.; De Rosa, M.; Brizzi, A.; Pasquini,
S.; Corelli, F. Tetrahedron 2011, 67, 5776–5783. (b) Ceoss, R. M.;
Manetsch, R. J. Org. Chem. 2010, 75, 8654–8657. (c) Zhao, T.; Xu, B.
Org. Lett. 2010, 12, 212–215. (d) Hessian, K. O.; Flynn, B. L. Org. Lett.
2006, 8, 243–246.
Org. Lett., Vol. 14, No. 6, 2012
1497