Journal of the American Chemical Society
Communication
Scheme 2. Proposed Mechanism for Kinetic Resolution
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support for this work was generously provided by the
NSFC (20872157 and 21172236), CAS, and the 973 Program
(2010CB833200 and 2011CB710800). We thank Dr. Rob
Hoen for helpful discussions.
REFERENCES
■
(1) (a) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395. (b) Corma,
A.; Leyva-Per
́
ez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657.
(c) Krause, N.; Winter, N. Chem. Rev. 2011, 111, 1994. (d) Pradal, A.;
Toullec, P. Y.; Michelet, V. Synthesis 2011, 1501.
(2) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007,
317, 496.
(3) Silver in Organic Chemistry; Harmata, M., Ed.; Wiley: Hoboken,
NJ, 2010.
Scheme 3. Sterically Bulky Substrates
(4) Leandri, G.; Monti, H.; Bertrand, M. Tetrahedron 1974, 30, 289.
(5) (a) Modern Allene Chemistry; Krause, N., Hashimi, A. S. K., Eds.;
Wiley-VCH: Weinheim, Germany, 2004. (b) Deng, Y.-Q.; Gu, Z.-H.;
Ma, S.-M. Chin. J. Org. Chem. 2006, 26, 1468. (c) Yu, S.; Ma, S. Chem.
Commun. 2011, 47, 5384.
(6) (a) Boldrini, G. P.; Lodi, L.; Tagliavini, E.; Tarasco, C.; Trombini,
C.; Umani-Ronchi, A. J. Org. Chem. 1987, 52, 5447. (b) Corey, E. J.;
Yu, C.-M.; Lee, D.-H. J. Am. Chem. Soc. 1990, 112, 878. (c) Brown, H.
C.; Khire, U. R.; Narla, G. J. Org. Chem. 1995, 60, 8130.
(7) (a) Iseki, K.; Kuroki, Y.; Kobayashi, Y. Tetrahedron: Asymmetry
1998, 9, 2889. (b) Nakajima, M.; Saito, M.; Hashimoto, S.
Tetrahedron: Asymmetry 2002, 13, 2449.
(8) (a) Yu, C.-M.; Yoon, S.-K.; Baek, K.; Lee, J.-Y. Angew. Chem., Int.
Ed. 1998, 37, 2392. (b) Inoue, M.; Nakada, M. Angew. Chem., Int. Ed.
2006, 45, 252. (c) Xia, G.; Yamamoto, H. J. Am. Chem. Soc. 2007, 129,
496.
(9) (a) Burgess, K.; Jennings, L. D. J. Am. Chem. Soc. 1990, 112,
6129. (b) Xu, D.; Li, Z.; Ma, S. Chem.Eur. J. 2002, 8, 5012.
(10) Yu, C.-M.; Kim, C.; Kweon, J. H. Chem. Commun. 2004, 2494.
(11) A reductive SN2′-type reaction to prepare chiral α-allenic
alcohols was reported with two examples. See: Kang, S.-K.; Kim, D.-
Y.; Rho, H.-S.; Yoon, S.-H.; Ho, P.-S. Synth. Commun. 1996, 26, 1485.
(12) Wang, Y.; Zhu, L.; Zhang, Y.; Hong, R. Angew. Chem., Int. Ed.
2011, 50, 2787.
(13) For leading references, see: (a) Ozawa, F.; Kubo, A.; Hayashi,
T. J. Am. Chem. Soc. 1991, 113, 1417. (b) Loiseleur, O.; Meier, P.;
Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1996, 35, 200.
(14) (a) Yoshida, S.; Fukui, K.; Kikuchi, S.; Yamada, T. J. Am. Chem.
Soc. 2010, 132, 4072. (b) Rauniyar, V.; Wang, Z. J.; Burks, H. E.;
Toste, F. D. J. Am. Chem. Soc. 2011, 133, 8486.
(15) (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem.,
Int. Ed. 2004, 43, 1566. (b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc.
2004, 126, 5356. (c) Terada, M. Synthesis 2010, 1929.
(16) (a) Hatano, M.; Moriyama, K.; Maki, T.; Ishihara, K. Angew.
Chem., Int. Ed. 2010, 49, 3823. (b) Klussmann, M.; Ratjen, L.;
Hoffmann, S.; Wakchaure, V.; Goddard, R.; List, B. Synlett 2010, 2189.
(c) Terada, M.; Kanomata, K. Synlett 2011, 1255.
(17) (a) Nagendrappa, G.; Joshi, G. C.; Devaprabhakara, D. J.
Organomet. Chem. 1971, 27, 421. (b) Chenier, J. H. B.; Howard, J. A.;
Mile, B. J. Am. Chem. Soc. 1985, 107, 4190.
to reach a high level of conversion (69%) and furnish excellent
enantioselectivity of the recovered starting material (s = 7.2 and
92.3% ee for 1t, vs s = 6.8 in Table 3) (see the SI for the
determination of the absolute configuration). The bent distal
CC bond and the extra C(1)−C(2) σ bond allow the
sterically bulky quaternary carbon center in 1t to move away
from the hindered quadrant region.
In summary, for the first time, an excellent level of
enantioselectivity has been achieved in the kinetic resolution
of α-allenic alcohols bearing a variety of functional groups
through chiral silver phosphate-catalyzed cycloisomerization.
The proposed mechanism shows that a silver−allene complex
and the structure in the chiral phosphate are responsible for the
success of high stereoselectivity. This efficient approach leading
to both enantiomerically enriched α-allenic alcohols and 2,5-
dihydrofurans opens an avenue for future method development
and synthesis of biologically interesting natural products.19
Further investigations of other silver-catalyzed enantioselective
cycloisomerizations involving allenes in the context of natural
product synthesis are currently underway and will be reported
in due course.
ASSOCIATED CONTENT
(18) (a) Brown, T. J.; Sugie, A.; Dickens, M. G.; Widenhoefer, R. A.
■
̀
Organometallics 2010, 29, 4207. (b) Gandon, V.; Lemiere, G.; Hours,
A.; Fensterbank, L.; Malacria, M. Angew. Chem., Int. Ed. 2008, 47,
7534.
(19) The gram-scale syntheses of 1a and 1s and their synthetic
applications are exemplified in the SI.
S
* Supporting Information
Experimental procedures, synthetic applications, and character-
ization of new compounds. This material is available free of
4099
dx.doi.org/10.1021/ja300453u | J. Am. Chem. Soc. 2012, 134, 4096−4099