Organometallics
Article
(10) Molybdenum− and tungsten−hydrazido complexes (MN−
NH2) are well known as one of the intermediates in the transformation
of dinitrogen into ammonia. See ref 2.
ASSOCIATED CONTENT
■
S
* Supporting Information
(11) (a) We have confirmed in the previous report that the reaction
of the molybdenum hydrazido complex [MoF(2a)(NNH2)(pyridine)]
BF4, which is prepared by the reaction of 1a with HBF4 followed by
addition of pyridine, with an excess amount of 2,6-lutidinium
trifluoromethanesulfonate produced ammonia (see ref 6). On the
basis of the experimental results, it is generally believed that tungsten
complexes have a stronger reducing ability via π back-donation than
molybdenum complexes do. (b) Hidai, M.; Mizobe, Y.; Sato, M.;
Kodama, T.; Uchida, Y. J. Am. Chem. Soc. 1978, 100, 5740. (c) Tuczek,
F.; Horn, K. H.; Lehnert, N. Coord. Chem. Rev. 2003, 245, 107. (d)
See ref 2.
(12) Takahashi, T.; Mizobe, Y.; Sato, M.; Uchida, Y.; Hidai, M. J. Am.
Chem. Soc. 1980, 102, 7461.
(13) Kawatsura, M.; Hartwig, J. F. Organometallics 2001, 20, 1960.
(14) Leung, W.-P.; Ip, Q. W.-Y.; Wong, S.-Y.; Mak, T. C. W.
Organometallics 2003, 22, 4604.
Crystallographic data for 3b·CH2Cl2, 4a′, 6a·C4H8O, and 7a are
available in CIF format. This material is available free of charge
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the Funding Program for Next
Generation World-Leading Researchers (GR025). Financial
support from Toyota Motor Corporation is also gratefully
acknowledged. We thank the Research Hub for Advanced
Nano Characterization at The University of Tokyo.
(15) Cochran, B. M.; Michael, F. E. J. Am. Chem. Soc. 2008, 130,
2786.
(16) Stoffelbach, F.; Saurenz, D.; Poli, R. Eur. J. Inorg. Chem. 2001,
2699.
(17) Persson, C.; Andersson, C. Inorg. Chim. Acta 1993, 203, 235.
(18) Weatherburn, M. W. Anal. Chem. 1967, 39, 971.
(19) Watt, G. W.; Chrisp, J. D. Anal. Chem. 1952, 24, 2006.
(20) CrystalStructure 3.80: Single Crystal Structure Analysis Software;
Rigaku Corp: Tokyo, Japan, and MSC: The Woodlands, TX, 2000−
2007.
(21) Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P.,
Garcia-Granda, S., Gould, R. O., Smits, J. M. M., Smykalla, C. PATTY:
The DIRDIF Program System; Technical Report of the Crystallography
Laboratory, University of Nijmegen: Nijmegen, The Netherlands,
1992.
REFERENCES
■
(1) Allen, A. D.; Senoff, C. V. Chem. Commun. 1965, 621.
(2) For recent reviews, see: (a) MacKay, B. A.; Fryzuk, M. D. Chem.
Rev. 2004, 104, 385. (b) Gambarotta, S.; Scott, J. Angew. Chem., Int. Ed.
2004, 43, 5298. (c) Hidai, M.; Mizobe, Y. Can. J. Chem. 2005, 83, 358.
(d) Himmel, H.-J.; Reiher, M. Angew. Chem., Int. Ed. 2006, 45, 6264.
(e) Chirik, P. J. Dalton Trans. 2007, 16. (f) Fryzuk, M. D. Acc. Chem.
Res. 2009, 42, 127. (g) Ballmann, J.; Munha,
Chem. Commun. 2010, 46, 1013.
́
R, F.; Fryzuk, M. D.
(3) For recent examples see: (a) Kupfer, T.; Schrock, R. R. J. Am.
Chem. Soc. 2009, 131, 12829. (b) Lee, Y.; Mankad, N. P.; Peters, J. C.
Nat. Chem. 2010, 2, 558. (c) Knobloch, D. J.; Lobkovsky, E.; Chirik, P.
J. Nat. Chem. 2010, 2, 30. (d) Semproni, S. P.; Lobkovsky, E.; Chirik,
P. J. J. Am. Chem. Soc. 2011, 133, 10406. (e) Knobloch, D. J.;
Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2010, 132, 10553.
(f) Rodriguez, M. M.; Bill, E.; Brennessele, W. W.; Holland, P. L.
Science 2011, 334, 780. (g) Ballmann, J.; Yeo, A.; Patrick, B. O.;
Fryzuk, M. D. Angew. Chem., Int. Ed. 2011, 50, 507. (h) Hebden, T. J.;
(22) Sheldrick, G. M. SHELX-97: Program for the Refinement of
Crystal Structure; University of Gottingen: Gottingen, Germany, 1997.
̈
̈
(23) Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda,
S., Gould, R. O., Israel, R., Smits, J. M. M. The DIRDIF-99 Program
̈
System; Crystallography Laboratory, University of Nijmegen: Nijme-
gen, The Netherlands, 1999.
NOTE ADDED AFTER ASAP PUBLICATION
■
This paper was published on the Web on Feb 23, 2012, with
errors in ref 5. The corrected version was reposted on Feb 29,
2012.
Schrock, R. R.; Takase, M. K.; Muller, P. Chem. Commun. 2012, 48,
̈
1851.
(4) (a) Bazhenova, T. A.; Shilov, A. E. Coord. Chem. Rev. 1995, 144,
69. (b) Shilov, A. E. Russ. Chem. Bull. 2003, 52, 2555. (c) Shiina, K. J.
Am. Chem. Soc. 1972, 94, 9266. (d) Komori, K.; Oshita, H.; Mizobe,
Y.; Hidai, M. J. Am. Chem. Soc. 1989, 111, 1939. (e) Komori, K.;
Sugiura, S.; Mizobe, Y.; Yamada, M.; Hidai, M. Bull. Chem. Soc. Jpn.
1989, 62, 2953. (f) Oshita, H.; Mizobe, Y.; Hidai, M. J. Organomet.
Chem. 1993, 456, 213. (g) Mori, M. J. Organomet. Chem. 2004, 689,
4210. (h) Tanaka, H.; Sasada, A.; Kouno, T.; Yuki, M.; Miyake, Y.;
Nakanishi, H.; Nishibayashi, Y.; Yoshizawa, K. J. Am. Chem. Soc. 2011,
133, 3498.
(5) (a) Yandulov, D. V.; Schrock, R. R. Science 2003, 301, 76.
(b) Schrock, R. R. Acc. Chem. Res. 2005, 38, 955. (c) Weare, W. W.;
Dai, X.; Byrnes, M. J.; Chin, J. M.; Schrock, R. R.; Muller, P. Proc. Natl.
̈
Acad. Sci. U. S. A. 2006, 103, 17099.
(6) Arashiba, K.; Miyake, Y.; Nishibayashi, Y. Nat. Chem. 2011, 3,
120.
(7) Morris, R. H.; Ressner, J. M. J. Chem. Soc., Chem. Commun. 1983,
909.
(8) Chatt, J.; Pearmann, A. J.; Richards, R. L. J. Chem. Soc., Dalton
Trans. 1977, 1852.
(9) (a) Baumann, J. A.; Bossard, G. E.; George, T. A.; Howell, D. B.;
Koczon, L. M.; Lester, R. K.; Noddings, C. M. Inorg. Chem. 1985, 24,
3568. (b) Kaul, B. B.; Hayes, R. K.; George, T. A. J. Am. Chem. Soc.
1990, 112, 2002. (c) George, T. A.; Kaul, B. B. Inorg. Chem. 1990, 29,
4969.
2041
dx.doi.org/10.1021/om300011z | Organometallics 2012, 31, 2035−2041