N. H. Evans, C. J. Serpell, K. E. Christensen, P. D. Beer
FULL PAPER
Jainuknan, T. Tuntulani, N. Muangsin, O. Chailapakul, P.
Kongsaeree, C. Pakavatchai, Tetrahedron Lett. 2005, 46, 2765–
2769.
ArH), 7.21 (s, 8 H, calix ArH), 6.92–6.96 (m, 16 H, hydroquinone
ArH), 6.58 (t, 3J = 5.6 Hz, 4 H, NH), 6.43 (t, 3J = 6.1 Hz, 4 H,
NH), 4.47 (d, 2J = 12.5 Hz, 8 H, calix CH2), 4.25–4.27 (m, 8 H,
OCH2), 4.20–4.21 (m, 8 H, OCH2), 4.11–4.12 (m, 16 H, CH2Cp
and CpH), 4.06–4.07 (m, 8 H, CpH), 4.02 (t, 3J = 5.4 Hz, 8 H,
OCH2CH2NH), 3.57–3.60 (app. quartet, 8 H, OCH2CH2NH), 3.44
(d, 2J = 12.5 Hz, 8 H, calix CH2), 1.23 [s, 36 H, calix C(CH3)3],
1.05 [s, 36 H, calix C(CH3)3] ppm. 13C NMR (125.8 MHz, [D6]-
acetone): δ = 160.0, 154.4, 154.1, 152.0, 151.0, 148.2, 142.2, 134.7,
128.5, 126.8, 126.4, 117.0, 116.4, 89.4, 75.2, 69.2, 69.1, 68.5, 68.4,
40.6, 39.6, 34.8, 34.5, 32.7, 32.1, 31.5 (2ϫaliphatic C peaks miss-
ing) ppm. HRMS (ES, + mode): m/z calcd. for C156H188Fe2N8-
Na2O20 1325.6221 [M + 2Na]2+; found 1325.6239.
[8] F. Otón, A. Tárraga, A. Espinosa, M. D. Velasco, P. Molina,
J. Org. Chem. 2006, 71, 4590–4598.
[9] M. D. Pratt, P. D. Beer, Polyhedron 2003, 22, 649–653.
[10] N. H. Evans, C. J. Serpell, P. D. Beer, New J. Chem. 2011, 35,
2047–2053.
[11] 1,1Ј-Bis(aminomethyl)ferrocene 3 was prepared by modifying
a literature procedure: F. Ossola, P. Tomasin, F. Benetollo, E.
Foresti, P. A. Vigato, Inorg. Chim. Acta 2003, 353, 292–300. See
Supporting Information for details.
[12] Additional ordering of the ferrocene moiety in the crystal is
implied by the data. The diffuse nature of the scattering, how-
ever, prevented a full solution of this at this time. Crystallo-
graphic studies on further samples of macrocycle 4 are ongo-
ing.
Supporting Information (see footnote on the first page of this arti-
cle): Syntheses of compounds 3 and 7; spectral characterization of
macrocycles 4, 5, 8 and 9; crystallographic information for struc-
ture of macrocycle 4; protocols and further data from 1H NMR
spectroscopy and electrochemistry experiments.
[13] Attempts to produce the urea analogue of macrocycle 4 were
thwarted by severe insolubility of the macrocycle, thereby pre-
venting purification of the macrocyclization reaction. Hence
the use of the solubilizing calix[4]arene in place of the polyether
chain in macrocycle 8.
[14] M. D. Lankshear, N. H. Evans, S. R. Bayly, P. D. Beer, Chem.
Eur. J. 2007, 13, 3861–3870.
Acknowledgments
[15] The estimation of association constants assumes that the TBA
salts are completely dissociated in the relatively competitive
solvent CD3CN. For some recent studies on this issue, see: a)
C. Roelens, A. Vacca, C. Venturi, Chem. Eur. J. 2009, 15, 2635–
2644; b) H. W. Gibson, J. W. Jones, L. N. Zakharov, A. L.
Rheingold, C. Slebodnick, Chem. Eur. J. 2011, 17, 3192–3206.
[16] M. J. Hynes, J. Chem. Soc., Dalton Trans. 1993, 311–312.
[17] To verify the appropriateness of this approach, for chloride it
N. H. E. wishes to thank the Engineering and Physical Sciences
Research Council (EPSRC) for
a DTA studentship. C. J. S.
acknowledges the EPSRC and Johnson–Matthey for a CASE-
sponsored studentship and the EPSRC for post-doctoral funding
(PhD Plus). We express our appreciation to Dr. J. J. Davis (Univer-
sity of Oxford) for use of electrochemical equipment and our grati-
tude to Diamond Light Source for the award of beamtime on I19
(MT1858) and to the beamline scientists for help and support.
was calculated that the FcCH2NH urea proton had a Ka
=
=
4.4ϫ102 m–1, whereas that of the other NH had a Ka
4.5ϫ102 m–1 compared to the average chemical shift giving Ka
[1] J. L. Sessler, P. A. Gale, W.-S. Cho, Anion Receptor Chemistry,
RSC, UK, 2006.
[2] S. M. Rowe, S. Miller, E. J. Sorscher, New Engl. J. Med. 2005,
352, 1992–2001.
[3] B. Moss, Chem. Ind. 1996, 407–411.
[4] K. Yoshihara, Top. Curr. Chem. 1996, 176, 17–35.
[5] K. Dasgupta, J. V. Dyke, A. B. Kirk, W. A. Jackson, Environ.
Sci. Technol. 2006, 40, 6608–6614.
= 4.5ϫ102 m–1 as stated in Table 1.
[18] See the Supporting Information for details of the assessment
of the reversibility of macrocycles 4 and 8.
[19] The shift of the Fc/Fc+ redox wave to more negative potentials
may be viewed as the binding of an anion that induces a poten-
tial shift of the electron transfer of the Fc/Fc+ redox couple,
or alternatively as the process of electron transfer that changes
the anion-binding affinity of the redox-active receptor, see:
P. D. Beer, P. A. Gale, G. Z. Chen, J. Chem. Soc., Dalton Trans.
1999, 1897–1909.
[6] For reviews, see: a) P. D. Beer, P. A. Gale, Angew. Chem. 2001,
113, 502–532; Angew. Chem. 2001, 113, 502; Angew. Chem. Int.
Ed. 2001, 40, 486–516; b) R. Martínez-Máñez, F. Sancenón,
Chem. Rev. 2003, 103, 4419–4476; c) S. R. Bayly, P. D. Beer,
G. Z. Chen, in: Ferrocenes: Ligands, Materials and Biomolec-
[20] Solubility issues were encountered in the electrochemical ti-
tration experiments with dihydrogen phosphate and benzoate
anions with macrocycle 4. This resulted in surface adsorption
of material, which led to restrictive diffusive access to the glassy
carbon working electrode and accounts for the sigmoidal-
shaped voltammograms observed in Figure 4 (a and b).
ˇ
ules (Ed.: P. Steˇpnicˇka), Wiley, UK, 2008, ch. 8, pp. 281–318;
d) S. K. Kim, D. H. Lee, J.-I. Hong, J. Yoon, Acc. Chem. Res.
2009, 42, 23–31; e) J. W. Steed, Chem. Soc. Rev. 2009, 38, 506–
509; f) R. M. Duke, E. B. Veale, F. M. Pfeffer, P. E. Kruger, T. [21] Z. Chen, A. R. Graydon, P. D. Beer, J. Chem. Soc. Faraday
Gunnlaugsson, Chem. Soc. Rev. 2010, 39, 3936–3953.
[7] a) P. D. Beer, Z. Chen, A. J. Goulden, A. Graydon, S. E. Stokes,
T. Wear, J. Chem. Soc., Chem. Commun. 1993, 1834–1836; b)
P. D. Beer, A. R. Graydon, A. O. M. Johnson, D. K. Smith, In-
org. Chem. 1997, 36, 2112–2118; c) O. Reynes, F. Maillard, J. C.
Trans. 1996, 92, 97–102.
[22] Addition of TBABzO to ferrocene leads to no observable
changes in the recorded CVs or SWVs.
[23] See the Supporting Information for further CVs and SWVs of
electrochemical anion titration experiments of macrocycle 4.
Moutet, G. Royal, E. Saint-Aman, G. Stanciu, J. P. Dutasta, I. [24] A. J. Evans, S. E. Matthews, A. R. Cowley, P. D. Beer, Dalton
Gosse, J. C. Multatier, J. Organomet. Chem. 2001, 637–639,
356–363; d) B. Tomapatanaget, T. Tuntulani, O. Chailapakul,
Org. Lett. 2003, 5, 1539–1542; e) C. Suksai, P. Leeladee, D.
Trans. 2003, 4644–4650.
Received: November 10, 2011
Published Online: January 17, 2012
944
www.eurjic.org
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2012, 939–944