A (2) and (ꢀ)-isatisine A (3) by Panek5 and Liang,6
respectively. Interesting, Kerr, Panek, and Liang demon-
strated elegant synthetic strategies that first constructed
the densely substituted furan subunit and, subsequently,
installed the second indole moiety by a nucleophilic ad-
dition.4ꢀ6 Herein, we report our biomimetic total synthesis
of (ꢀ)-isatisine A (3). Our biomimetic synthetic strategy
features a convergent nucleophilic addition for installation
of the indole moiety and, subsequently, an unprecedented
benzilic ester rearrangement for construction of the dense-
ly substituted furan subunit.
Thus, a plausible biogenetic pathway for (ꢀ)-isatisine A
(3) was proposed by us as shown in Scheme 1. In the
proposed biogenetic route, indican (4) is first converted to
compound 5 via rearrangement and subsequent oxidation. 5
then undergoes a rapid nucleophilic addition by an indole
molecule to afford compound 6.4b,9 The key intermediate,
1,2-diketone 7, is expected to be obtained by selective
oxidation of compound 6. Finally, biogenetic benzilic acid
rearrangement10 of compound 7 could give rise to the
compound 8, which is converted to (ꢀ)-isatisine A (3)
through dehydration.
Scheme 1. Biogenetic Pathway Proposed for (ꢀ)-Isatisine A
Scheme 2. Retrosynthesis Analysis of (ꢀ)-Isatisine A
In order to support this biogenetic pathway, benzilic
ester rearrangement was devised as a key biomimetic
reaction for the synthesis of (ꢀ)-isatisine A. As shown in
retrosynthesis analysis (Scheme 2), we reasoned that the
synthesis of (ꢀ)-isatisine A (3) could be achieved from
compound 9 by a biomimetic oxidation, benzilic ester
rearrangement, and cyclization. The R-hydroxy ketone 9
would be prepared easily by deprotection from diketone
10. We envisioned that if electrophilic 11 and nucleophilic
13 could be merged together by base, a short, convergent,
We became interested in (ꢀ)-isatisine A (3) as a novel
alkaloid possessing an unprecedented fused-tetracyclic
skeleton which cannot be well explained from a biogenetic
point of view.3 Studies suggest that the polyhydroxy core
of some natural products is likely to arise in nature from
glycosides.7 Inspired by the multiple hydroxy groups and
indole moiety of (ꢀ)-isatisine A (3), indican (4), isolated
from the same species, seems to be the precursor of 3.
After further survey, indican (4) wasfoundinhigherconcen-
tration in the young leaves than the old leaves of I. indigotica
and as an important precursor for other compounds.8
(9) (a) Young, T. E.; Auld, D. S. J. Org. Chem. 1963, 28, 418. (b)
Chien, C. S.; Takanami, T.; Kawasaki, T.; Sakamoto, M. Chem. Pharm.
Bull. 1985, 33, 1843. (c) Ling, K. Q. Synth. Commun. 1996, 26, 149. (d)
Clawson, R. W., Jr.; Dacko, C. A.; Deavers, R. E., III; Akhmedov,
€
N. G.; Soderberg, B. C. G. Tetrahedron 2009, 65, 8786. (e) Higuchi, K.;
Sato, Y.; Kojima, S.; Tsuchimochi, M.; Sugiura, K.; Hatori, M.;
Kawasaki, T. Tetrahedron 2010, 66, 1236. (f) Rueping, M.; Raja, S.;
ꢀ~
Nunez, A. Adv. Synth. Catal. 2011, 353, 563.
(10) For reviews, see: (a) Selman, S.; Easthan, J. F. Quart. Rev.
Chem. Soc. 1960, 14, 221. (b) Rubin, M. B. Chem. Rev. 1975, 75, 177. (c)
Burke, A. J.; Marques, C. S. Mini-Rev. Org. Chem. 2007, 4, 310. For
recent examples: (d) Rajyaguru, I.; Rzepa, H. S. J. Chem. Soc., Perkin
Trans. 2 1987, 1819. (e) Stoltz, B. M.; Wood, J. L. Tetrahedron Lett.
1996, 37, 3929. (f) Hotchkiss, D. J.;Jenkinson, S. F.;Storer, R.;Heinzc, T.;
Fleet, G. W. J. Tetrahedron Lett. 2006, 47, 315. (g) Marques, C. S.;
Moura, N.; Burke, A. J. Tetrahedron Lett. 2006, 47, 6049. (h) Yamabe, S.;
Tsuchida, N.; Yamazaki, S. J. Org. Chem. 2006, 71, 1777. (i) Umland,
K. D.; Palisse, A.; Haug, T. T.; Kirsch, S. F. Angew. Chem., Int. Ed. 2011,
50, 9965.
(4) (a) Karadeolian, A.; Kerr, M. A. Angew. Chem., Int. Ed. 2010, 49,
1133. (b) Karadeolian, A.; Kerr, M. A. J. Org. Chem. 2010, 75, 6830.
(5) Lee, J.; Panek, J. S. Org. Lett. 2011, 13, 502.
(6) Zhang, X.; Mu, T.; Zhan, F. X.; Ma, L. J.; Liang, G. X. Angew.
Chem., Int. Ed. 2011, 50, 6164.
(7) Watanabe, H.; Nakada, M. J. Am. Chem. Soc. 2008, 130, 1150.
(8) (a) Kokubun, T.; Edmonds, J.; John, P. Phytochemistry 1998, 49,
79. (b) Maugarda, T.; Enauda, E.; Choisyb, P.; Legoya, M. D. Phyto-
chemistry 2001, 58, 897.
Org. Lett., Vol. 14, No. 6, 2012
1625