use of the methoxy-substituted catalyst 9a (entry 13) led to
slightly higher product ee, whereas the corresponding benzoyl
analogue 9b is a poor catalyst from a stereoselectivity standpoint.
As expected, representative traditional literature catalyst systems
characterised by functionality capable of donating two hydrogen
bonds at C-9 (i.e. 1,3c,10a,b,19 1020 and 11,21 entries 15–17 respec-
tively) failed to promote this reaction involving an alkyl thiol
enantioselectively.
2010, 49, 4290; (h) S. Bonollo, D. Lanari, F. Pizzo and L. Vaccaro,
Org. Lett., 2011, 13, 2150.
3 (a) Non-nitroalkene electrophiles: H. H. Hiemstra and H. Wynberg,
J. Am. Chem. Soc., 1981, 103, 417; (b) P. McDaid, Y. Chen and
L. Deng, Angew. Chem., Int. Ed., 2002, 41, 338; (c) B.-J. Li, L. Jiang,
M. Liu, Y.-C. Chen, L.-S. Ding and Y. Wu, Synlett, 2005, 603;
(d) D. Enders and K. Hoffman, Eur. J. Org. Chem., 2009, 1665;
(e) N. K. Rana, S. Selvakumar and V. K. Singh, J. Org. Chem., 2010,
75, 2089; (f) Q.-L. Pei, H.-W. Sun, Z.-J. Wu, X.-J. Du, X.-M. Zhang
and W.-C. Yuan, J. Org. Chem., 2011, 76, 7849; (g) J. M. Hatcher,
M. C. Kohler and D. Coltart, Org. Lett., 2011, 13, 3810;
(h) X.-Q. Dong, X. Fang and C.-J. Wang, Org. Lett., 2011, 13, 4426.
4 (a) Nitroalkene electrophiles: M. Meciarova, S. Toma and P. Kotrusz,
Org. Biomol. Chem., 2006, 4, 1420; (b) S. Shirakawa, A. Moriyama and
S. Shimizu, Eur. J. Org. Chem., 2008, 5957; (c) J. Wang, H. Xie, H. Li,
L. Zu and W. Wang, Angew. Chem., Int. Ed., 2008, 47, 4177;
(d) Y. Gao, Q. Ren, H. Wu, M. Li and J. Wang, Chem. Commun.,
2010, 46, 9232; (e) X.-F. Wang, Q.-L. Hua, Y. Cheng, X.-L. An,
Q.-Q. Yang, J.-R. Chen and W.-J. Xiao, Angew. Chem., Int. Ed., 2010,
49, 8379.
5 (a) T. Ishino and T. Oriyama, Chem. Lett., 2007, 36, 550; (b) A. Kumar
and Akanksha, Tetrahedron, 2007, 63, 11086; (c) P. Ricci, A. Carlone,
G. Bartoli, M. Bosco, L. Sambri and P. Melchiorre, Adv. Synth. Catal.,
2008, 350, 49; (d) P. Galzerano, F. Pesciaioli, A. Mazzanti, G. Bartoli
and P. Melchiorre, Angew. Chem., Int. Ed., 2009, 48, 7892;
(e) M. Yoshida, Y. Ono and S. Hara, Tetrahedron Lett., 2010,
51, 5134; (f) X. Tian, C. Cassani, Y. Liu, A. Moran, A. Urakawa,
P. Galzerano, E. Arceo and P. Melchiorre, J. Am. Chem. Soc., 2011,
133, 17934.
Given the importance of the C-9 unit in the case of catalyst
5, it was decided to prepare an analogue with augmented steric
bulk at this position. Gratifyingly, installation of a large
(TBDPS) silyl-group resulted in a new catalyst (12) capable
of generating 4a in significantly improved enantiomeric excess
(entry 18). Enantioselectivity increased further at ꢀ30 1C
(entry 19) and a subsequent solvent screen (entries 20–23)
and temperature/concentration optimisation experiments
(entries 24–26) allowed conditions to be identified under which
12 (at 5 mol% loading) could promote the formation of 4a in
quantitative yield and 92% ee in 24 h.
With a useful protocol now in hand, attention turned to the
question of substrate scope (Table 2). We were pleased to find
that products derived from the addition of 3a to both activated
(13–15, entries 1–3) deactivated (16, entry 4) and heterocyclic
(both p-excessive and p-deficient, 17–19, entries 5–7) nitroolefins
could be generated in excellent yield and enantioselectivity.
Product ee was Z90% in all cases save that of the nitro-
substituted 14. Of particular synthetic utility is the use of alkane
thiol derivatives which can serve as synthetic equivalents for H2S:
i.e. sulfides containing photo-cleavable22 (i.e. 20, entry 8) and
acid/Hg2+-labile23 (i.e. 21, entry 9) functionality can be prepared
in excellent yield and ee using this methodology through the
selection of the appropriate thiol. Non-benzylic alkane thiols
are also compatible (22–23, entries 10–11).
6 (a) D. Leow, S. Lin, S. K. Chittimalla, X. Fu and C.-H. Tan,
Angew. Chem., Int. Ed., 2008, 47, 5641; (b) Y. Liu, B. Sun, B. Wang,
M. Wakem and L. Deng, J. Am. Chem. Soc., 2009, 131, 418; (c) L. Dai,
H. Yang and F. Chen, Adv. Synth. Catal., 2010, 352, 2137; (d) L. Dai,
H. Yang and F. Chen, Eur. J. Org. Chem., 2011, 5071.
7 It should be noted that a single example of an organocatalytic
asymmetric addition of a benzyl mercaptan derivative to a
b,b-disubstituted nitroalkene has been reported. This addition
required higher nucleophile and catalyst loadings, proceeded at a
slower rate and was less enantioselective (87% ee) than the
corresponding addition of thiophenol derivatives, see: H.-H. Lu,
F.-G. Zhang, X.-G. Meng, S.-W. Duan and W.-J. Xiao, Org. Lett.,
2009, 11, 3946.
8 H. Li, L. Zu, J. Wang and W. Wang, Tetrahedron Lett., 2006, 47, 3145.
9 K. L. Kimmel, M. T. Robak and J. A. Ellman, J. Am. Chem. Soc.,
2009, 131, 8754.
10 (a) For selected examples see: S. H. McCooey and S. J. Connon,
Angew. Chem., Int. Ed., 2005, 44, 6367; (b) J. Ye, D. J. Dixon and
P. S. Hynes, Chem. Commun., 2005, 4481; (c) T.-Y. Liu, H.-L. Cui,
Q. Chai, J. Long, B.-J. Li, Y. Wu, L.-S. Ding and Y.-C. Chen,
Chem. Commun., 2007, 2228.
11 For a potential caveat see: S. H. McCooey, T. McCabe and
S. J. Connon, J. Org. Chem., 2006, 71, 7494.
12 M. M. Kreevoy, E. T. Harper, R. E. Duvall, H. S. Wilgus III and
L. T. Ditsch, J. Am. Chem. Soc., 1960, 82, 4899.
13 J.-N. Li, L. Liu, Y. Fu and Q.-X. Guo, Tetrahedron, 2006, 62, 4453.
14 The pKa of thioacetic acid, thiophenol and benzylmercaptan
in DMSO are 5.2, 10.3 and 15.3 respectively: F. G. Bordwell,
Acc. Chem. Res., 1988, 21, 456.
15 G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, A. Mazzanti,
L. Sambri and P. Melchiorre, Chem. Commun., 2007, 722.
16 C. Palacio and S. J. Connon, Org. Lett., 2011, 13, 1298.
17 (a) For previous examples see: S. Brandes, M. Bella, A. Kjoersgaard
and K. A. Jørgensen, Angew. Chem., Int. Ed., 2006, 45, 1147;
(b) X. Liu, B. Sun and L. Deng, Synlett, 2009, 1685.
18 A less malodorous alternative to benzyl mercaptan.
19 B. Vakulya, S. Varga, A. Csampai and T. Soos, Org. Lett., 2005,
7, 1967.
In summary, prompted by a curious dependence of enantio-
selectivity on the acidity of thiol nucleophiles in many organo-
catalytic conjugate additions, we have developed (to the best of
our knowledge) the first general, highly efficient and enantio-
selective organocatalytic system for the addition of previously
problematic alkane thiols to nitrostyrenes. The process is
promoted by a readily prepared novel C-50 substituted bifunctional
cinchona alkaloid catalyst and is of broad scope: a range of alkane
thiols (including those containing cleavable benzyl substituents)
and a variety of electron deficient, electron rich and heterocyclic
nitrostyrenes are compatible. We would like to thank the Irish
Research Council for Science Engineering and Technology for
funding and Dr T. McCabe for X-ray analysis.
Notes and references
1 For an excellent review see: D. Enders, K. Luttgen and
A. A. Narine, Synthesis, 2007, 959.
2 (a) For representative examples of metal-ion catalysed processed see:
E. Emori, T. Arai, H. Sasai and M. Shibasaki, J. Am. Chem. Soc., 1998,
120, 4043; (b) M. Saito, M. Nakajima and S. Hashimoto, Tetrahedron,
2000, 56, 9589; (c) K. Nishimura and K. Tomioka, J. Org. Chem., 2002,
67, 431; (d) K. Matsumoto, A. Watanabe, T. Uchida, K. Ogi and
T. Katsuki, Tetrahedron Lett., 2004, 45, 2385; (e) A. M. M. Abe, S. J.
K. Saureland and A. M. P. Koskinen, J. Org. Chem., 2007, 72, 5411;
(f) M. Kawatsura, Y. Komatsu, M. Yamamoto, S. Hayase and T. Itoh,
Tetrahedron, 2008, 64, 3488; (g) Y. Hui, J. Jiang, W. Wang, W. Chen,
Y. Chen, Y. Cai, L. Lin, X. Liu and X. Feng, Angew. Chem., Int. Ed.,
20 J. P. Malerich, K. Hagihara and V. H. Rawal, J. Am. Chem. Soc.,
2008, 130, 14416.
21 J. W. Lee, T. H. Ryu, J. S. Oh, H. Y. Bae, H. B. Jang and
C. E. Song, Chem. Commun., 2009, 7224.
22 A. B. Smith III, S. N. Savinov, U. V. Manjappara and
I. M. Chaiken, Org. Lett., 2002, 4, 4041.
23 B. Zhou, J. Guo and S. J. Danishefsky, Org. Lett., 2002, 4, 43.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 2849–2851 2851