136
H.-J. Hao et al. / Journal of Molecular Structure 1012 (2012) 131–136
Appendix A. Supplementary material
CCDC 853480, 853481 and 853482 contain the supplementary
crystallographic data for 1–3 respectively in this paper. These data
Centre, 12 Union Road, Cambridge CB 21EZ, UK; fax: (+44) 1223-
336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data
associated with this article can be found, in the online version, at
References
[1] G. Férey, Chem. Soc. Rev. 37 (2008) 191.
[2] S.L. James, Chem. Soc. Rev. 32 (2003) 276.
[3] E.B. Rusanov, V.V. Ponomarova, V.V. Komarchuk, H. Stoeckli-Evans, E.
Fernandez-Ibanez, F. Stoeckli, J. Sieler, K.V. Domasevitch, Angew. Chem., Int.
Ed. 42 (2003) 2499.
[4] A.J. Lan, K.H. Li, H.H. Wu, D.H. Olson, T.J. Emge, W. Ki, M.C. Hong, J. Li, Angew.
Chem., Int. Ed. 48 (2009) 2334.
Fig. 5. TGA curves for complexes 1–3.
[5] J.P. Zhang, X.C. Huang, X.M. Chen, Chem. Soc. Rev. 38 (2009) 2385.
[6] M.J. Zaworotko, Nature 451 (2008) 410.
[7] T.L. Hennigar, P. Losier, D.C. MacQuarrie, M.J. Zaworotko, R.D. Rogers, Angew.
Chem., Int. Ed. Engl. 36 (1997) 972.
[8] G.J. McManus, J.J.P. Iv, M. Perry, B.D. Wagner, M.J. Zaworotko, J. Am. Chem. Soc.
129 (2007) 9094.
[9] L. Tei, V. Lippolis, A.J. Blake, P.A. Cooke, Chem. Commun. (1998) 2633.
[10] E.C. Constable, T. Kulke, G. Baum, D. Fenske, Chem. Commun. (1997) 2043.
[11] D.J. Eisler, R.J. Puddephatt, Inorg. Chem. 45 (2006) 7295.
[12] D. Venkataraman, Y. Du, S.R. Wilson, K.A. Hirsch, P. Zhang, J.S. Moore, J. Chem.
Educ. 74 (1997) 915.
[13] G. Baum, E.C. Constable, D. Fenske, C.E. Housecroft, T. Kulke, M. Neuburger, M.
Zehnder, J. Chem. Soc., Dalton Trans. (2000) 945.
[14] Y. Chen, H.X. Li, D. Liu, L.L. Liu, N.Y. Li, H.Y. Ye, Y. Zhang, J.P. Lang, Cryst. Growth
Des. 8 (2008) 3810.
attributed to the loss of uncoordinated water molecules. The
weight loss is about 11.3%, in correspondence with the calculated
value of 12.0%. Its framework is stable to 330 °C and then the
framework begins to collapse, accompanying the release of coordi-
nated bime and ipa ligands. For 3, a weight loss occurred from 30
to 100 °C which is attributed to the loss of uncoordinated water
molecule. The weight loss is about 3.9%, in correspondence with
the calculated value of 4.0%. The framework keeps stable to
360 °C, and then the framework collapses accompanying the re-
lease of the bime and carboxylate ligands.
[15] M.T. Rispens, A. Meetsma, R. Rittberger, C.J. Brabec, N.S. Sariciftci, J.C.
Hummelen, Chem. Commun. (2003) 2116.
[16] W.H. Zhang, Y.L. Song, Y. Zhang, J.P. Lang, Cryst. Growth Des. 8 (2008) 253.
[17] G. Smith, B.A. Cloutt, D.E. Lynch, K.A. Byriel, C.H.L. Kennard, Inorg. Chem. 37
(1998) 3236.
5. Conclusions
In conclusion, we prepared and characterized three novel
mixed-ligand Zn(II) complexes which constructed from the bime
and dicarboxylic acid. Complexes 1 and 2 have the similar 2D infi-
nite (4,4) net structures in which two different hydrogen-bonded
water chains were also observed and 3 is a 2D hexagonal 63-hcb
[18] Y. Kang, S.S. Lee, K.M. Park, S.H. Lee, S.O. Kang, J. Ko, Inorg. Chem. 40 (2001)
7027.
[19] J. Seo, M.R. Song, K.F. Sultana, H.J. Kim, J. Kim, S.S. Lee, J. Mol. Struct. 827 (2007)
201.
[20] O.S. Jung, Y.J. Kim, Y.A. Lee, K.M. Park, S.S. Lee, Inorg. Chem. 42 (2003)
844.
[21] X.L. Wang, C. Qin, E.B. Wang, Y.G. Li, Z.M. Su, L. Xu, L. Carlucci, Angew. Chem.,
Int. Ed. 44 (2005) 5824.
net structure. For 1–2, bime adopts the identical l2 bridging coor-
dination mode but belonging to different conformations with dif-
ferent lengths. In 2, the bime belongs to a anti conformation
which is much longer than that in 1 with gauche conformation.
As a result, complex 2 possesses a larger (4,4) net than that in 1.
Compared 1 with 3, although the bime adopts the same conforma-
tions, they obtain 2D (4,4) net and 63-hcb net, respectively, which
is due to the influence of different dicarboxylates. The results of
this study not only demonstrate that the conformation of the bime
ligands may tune the frameworks of coordination complex but also
illustrate that the various dicarboxylates may also play an impor-
tant role in the formation of final structures.
[22] P.Q. Zheng, Y.P. Ren, L.S. Long, R.B. Huang, L.S. Zheng, Inorg. Chem. 44 (2005)
1190.
[23] D. Sun, Z.H. Wei, C.F. Yang, D.F. Wang, N. Zhang, R.B. Huang, L.S. Zheng, Cryst.
Eng. Commun. 13 (2011) 1591.
[24] X.C. Huang, J.P. Zhang, Y.Y. Lin, X.L. Yu, X.M. Chen, Chem. Commun. (2004)
1100.
[25] F.H. Allen, Acta Crystallogr., Sect. B: Struct. Sci. 58 (2002) 380.
[26] Cambridge Structure Database Search, CSD Version 5.28 (November 2006)
with 15 Updates (January 2007–November 2011).
[27] G.M. Sheldrick, SHELXS 97: Program for Crystal Structure Solution, University
of Göttingen, Germany, 1997.
[28] G.M. Sheldrick, SHELXL 97: Program for Crystal Structure Refinement,
University of Göttingen, Germany, 1997.
[29] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, John Wiley & Sons, New York, 1986.
[30] L. Yang, D.R. Powell, R.P. Houser, Dalton Trans. (2007) 955.
[31] X. Zhao, H. He, T. Hu, F. Dai, D. Sun, Inorg. Chem. 48 (2009) 8057.
[32] H. He, F. Dai, D. Sun, Dalton Trans. (2009) 763.
[33] X. Zhao, H. He, F. Dai, D. Sun, Y. Ke, Inorg. Chem. 49 (2010) 8650.
[34] G.P. Moss, Pure Appl. Chem. 68 (1996) 2193.
[35] A.F. Wells, Three-Dimensional Nets and Polyhedra, Wiley-Interscience, New
York, 1977.
[36] B.F. Hoskins, R. Robson, J. Am. Chem. Soc. 112 (1990) 1546.
[37] W.J. Chen, Y. Wang, C. Chen, Q. Yue, H.M. Yuan, J.S. Chen, S.N. Wang, Inorg.
Chem. 42 (2003) 944.
Acknowledgments
This work was financially supported by the National Natural Sci-
ence Foundation of China (No. 20721001), 973 Project (Grant
2007CB815301) from MSTC, Independent Innovation Foundation
of Shandong University(2011GN030), and the Special Fund for Post-
doctoral Innovation Program of Shandong Province (201101007).