Journal of the American Chemical Society
Article
and 1,2-disubstituted alkenes (entries 6 and 7) could be readily
incorporated in 3 h. The hydroacylation of allenes provides easy
access to β,γ-unsaturated ketones;71 cyclohexylallene was
hydroacylated with aldehyde 2 using 2 mol % of catalyst 12a
(entry 8). Butyl vinyl ether could also be hydroacylated using
1 mol % of 12a to give a mixture of branched and linear isomers
(entry 9). To our knowledge, this is the first example of the
intermolecular hydroacylation of an enol ether.72 These reactions
clearly demonstrate the broad scope of alkene, alkyne, and allene
substrates offered by these catalysts.
The aldehyde substrate could also be varied. Both electron
rich (entry 10) and electron poor (entry 11) aryl aldehydes
were incorporated with only 0.2 mol % of catalyst 12c. A
cyclohexene aldehyde (entries 12 and 13) underwent efficient
hydroacylation of both alkyne and alkene substrates. Aliphatic
aldehydes were also useful substrates, and they proceeded well
in the hydroacylation of an alkene (entry 14) with 0.5 mol % of
12c and an alkyne (entry 15) with 1% of 12a. Finally, MTM-
protected hydroxyacetaldehyde (entry 16) underwent alkyne
hydroacylation with 2 mol % of 12a. We have recently demon-
strated the synthetic utility of the MTM protecting group as a
removable directing group for hydroacylation, although catalyst
loadings of 10 mol % have previously been required.33
ACKNOWLEDGMENTS
■
The EPSRC (Grant EP/G056609/1) for funding and Professor
Guy Lloyd-Jones for insightful discussions.
REFERENCES
■
(1) Suggs, J. W. J. Am. Chem. Soc. 1978, 100, 640.
(2) Sakai, K.; Ide, J.; Oda, O.; Nakamura, N. Tetrahedron Lett. 1972,
13, 1287.
(3) Lochow, C. F.; Miller, R. G. J. Am. Chem. Soc. 1976, 98, 1281.
(4) Willis, M. C. Chem. Rev. 2009, 2010, 725.
(5) Fairlie, D. P.; Bosnich, B. Organometallics 1988, 7, 936.
(6) Fairlie, D. P.; Bosnich, B. Organometallics 1988, 7, 946.
(7) Lenges, C. P.; Brookhart, M. J. Am. Chem. Soc. 1997, 119, 3165.
(8) Roy, A. H.; Lenges, C. P.; Brookhart, M. J. Am. Chem. Soc. 2007,
129, 2082.
(9) Bosnich, B. Acc. Chem. Res. 1998, 31, 667.
(10) Moxham, G. L.; Randell-Sly, H.; Brayshaw, S. K.; Weller, A. S.;
Willis, M. C. Chem.Eur. J. 2008, 14, 8383.
(11) Hyatt, I. F. D.; Anderson, H. K.; Morehead, A. T.; Sargent, A. L.
Organometallics 2008, 27, 135.
(12) Shen, Z.; Dornan, P. K.; Khan, H. A.; Woo, T. K.; Dong, V. M.
J. Am. Chem. Soc. 2009, 131, 1077.
(13) Pawley, R. J.; Moxham, G. L.; Dallanegra, R.; Chaplin, A. B.;
Brayshaw, S. K.; Weller, A. S.; Willis, M. C. Organometallics 2010, 29,
1717.
(14) Gonzalez-Rodríguez, C.; Pawley, R. J.; Chaplin, A. B.;
́
Thompson, A. L.; Weller, A. S.; Willis, M. C. Angew. Chem., Int. Ed.
2011, 50, 5134.
(15) Bergens, S. H.; Fairlie, D. P.; Bosnich, B. Organometallics 2002,
9, 566.
(16) Fuji, K.; Morimoto, T.; Tsutsumi, K.; Kakiuchi, K. Chem.
Commun. 2005, 3295.
(17) Khan, H. A.; Kou, K. G. M.; Dong, V. M. Chem. Sci. 2011,
2, 407.
(18) Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008,
130, 14120.
(19) Omura, S.; Fukuyama, T.; Horiguchi, J.; Murakami, Y.; Ryu, I.
J. Am. Chem. Soc. 2008, 130, 14094.
CONCLUSIONS
■
We have outlined the development of new intermolecular
hydroacylation catalysts based upon small-bite-angle ligands
which allow for the union of β-S-substituted aldehydes with a
wide variety of unactivated alkenes and alkynes. Through
judicious choice of solvent and catalyst/substrate concen-
tration, the unwanted decarbonylation deactivation pathway is
attenuated while the productive hydroacylation reaction is
enhanced to such an extent that very low catalyst loadings (0.1
mol %) and turnover frequencies of greater than 300 h−1 can be
achieved. As these precatalyst systems are also readily prepared
and bench-stable, they offer a practical solution for carrying out
intermolecular hydroacylation reactions with β-tethered
aldehydes. The high activity of these catalysts has also allowed
previously challenging substrate classes to be included.
Interestingly, high enantioselectivies have previously been
reported in Rh-mediated hydrogenations using asymmetric
ligands closely related to tBu2PCH2PtBu2,73 and this encourages
further development given the low loading and high-turnovers
we report. With such efficient catalysts in hand the next
challenge is to develop systems that do not require a
β-tethered aldehyde.
(20) Goikhman, R.; Milstein, D. Angew. Chem., Int. Ed. 2001, 40,
1119.
(21) Betley, T. A.; Peters, J. C. Angew. Chem., Int. Ed. 2003, 42, 2385.
(22) Hoffman, T. J.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50,
10670.
(23) Jun, C. H.; Jo, E. A.; Park, J. W. Eur. J. Org. Chem. 2007, 1869.
(24) Tanaka, K.; Shibata, Y.; Suda, T.; Hagiwara, Y.; Hirano, M. Org.
Lett. 2007, 9, 1215.
(25) Kokubo, K.; Matsumasa, K.; Nishinaka, Y.; Miura, M.; Nomura,
M. Bull. Chem. Soc. Jpn. 1999, 72, 303.
(26) Imai, M.; Tanaka, M.; Tanaka, K.; Yamamoto, Y.; Imai-Ogata,
N.; Shimowatari, M.; Nagumo, S.; Kawahara, N.; Suemune, H. J. Org.
Chem. 2004, 69, 1144.
(27) Coulter, M. M.; Kou, K. G. M.; Galligan, B.; Dong, V. M. J. Am.
Chem. Soc. 2010, 132, 16330.
(28) Willis, M. C.; McNally, S. J.; Beswick, P. J. Angew. Chem., Int. Ed.
2004, 43, 340.
(29) Willis, M. C.; Randell-Sly, H. E.; Woodward, R. L.; Currie, G. S.
Org. Lett. 2005, 7, 2249.
(30) Willis, M. C.; Randell-Sly, H. E.; Woodward, R. L.; McNally,
S. J.; Currie, G. S. J. Org. Chem. 2006, 71, 5291.
(31) Osborne, J. D.; Randell-Sly, H. E.; Currie, G. S.; Cowley, A. R.;
Willis, M. C. J. Am. Chem. Soc. 2008, 130, 17232.
(32) Osborne, J. D.; Willis, M. C. Chem. Commun. 2008, 5025.
(33) Parsons, S. R.; Hooper, J. F.; Willis, M. C. Org. Lett. 2011,
13, 998.
(34) Lenden, P.; Ylioja, P. M.; Gonzalez-Rodriguez, C.; Entwistle,
D. A.; Willis, M. C. Green Chem. 2011, 13, 1980.
(35) Moxham, G. L.; Randell-Sly, H. E.; Brayshaw, S. K.; Woodward,
R. L.; Weller, A. S.; Willis, M. C. Angew. Chem., Int. Ed. 2006, 45, 7618.
ASSOCIATED CONTENT
* Supporting Information
■
S
Full synthetic, crystallographic, and characterization details.
This material is available free of charge via the Internet at
with the Cambridge Crystallographic Data Centre under
CCDC Nos. 857099−857104. These data can be obtained
free of charge from The Cambridge Crystallographic Data
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
4896
dx.doi.org/10.1021/ja211649a | J. Am. Chem. Soc. 2012, 134, 4885−4897