ORGANIC
LETTERS
2012
Vol. 14, No. 6
1412–1415
Cross-Dehydrogenative Coupling
between Enamino Esters and Ketones:
Synthesis of Tetrasubstituted Pyrroles
Miao Zhao, Fen Wang, and Xingwei Li*
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,
P. R. China
Received January 19, 2012
ABSTRACT
Tetrasubstituted pyrroles have been synthesized via the cross-dehydrogenative coupling between enamino esters and acetone. Silver carbonate
proved to be an effective oxidant, and no transition metal catalyst is necessary.
Construction of CÀE (E = C, N, and O) bonds via the
oxidative functionalization of CÀH bonds with an EÀH
group has attracted increasing attention over the past
decades.1 This process is especially important in achieving
molecular complexity considering the ubiquity of CÀH
bonds in organic compounds, and these CÀE bonds are
key linkages in organics. Two categories of intrinsic path-
ways can be followed in this process, namely, the
(transition-metal-catalyzed) CÀH activation pathway2
and the cross-dehydrogenative coupling (CDC) pathway.3
While oxidative cross-coupling via the CÀH activation
pathway has been well-studied in terms of scope, mecha-
nisms, and applications, the construction of CÀE bonds
via a CDC process has become an increasingly important
strategy. Given the abundance of CÀH bonds, this strat-
egy represents a step-economic access to CÀC bonds in
that there is no necessity of prefunctionalization of the
CÀH bond in either of the precursors. Previous reports
indicated that metal or organic single-electron oxidants or
combination of metal catalysts and organic oxidants have
been widely used for CDC reactions, among which Fe,4
Cu,5 and V6 catalysts have been well-studied.
The pyrrole ring is widely present in numerous natural
products, synthetic pharmaceuticals, and molecular
metarials. Therefore, considerable attention has been paid to
develop efficient methods for the synthesis of these privi-
leged molecules. In recent years, a large number of redox-
neutral or oxidative pyrrole syntheses have indeed been
reported.7 While pyrroles and indoles are indeed different,
we reason that inspirations on pyrrole synthesis can be
(4) (a) Li, Y.; Li, B.; Lu, X.; Lin, S.; Shi, Z. Angew. Chem., Int. Ed.
2009, 48, 3817. (b) Park, S. J.; Price, J. R.; Todd, M. H. J. Org. Chem.
2012, 77, 949. (c) Chandrasekharam, M.; Chiranjeevi, B.; Gupta,
K. S. V.; Sridhar, B. J. Org. Chem. 2011, 76, 10229. (d) Richter, H.;
(1) For reviews, see: (a) Satoh, T.; Miura, M. Chem.;Eur. J. 2010,
16, 11212. (b) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew.
Chem., Int. Ed. 2009, 48, 5094. (c) Lyons, T. W.; Sanford, M. S. Chem.
Rev. 2010, 110, 1147. (d) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem.
Soc. Rev. 2010, 39, 712. (e) Colby, D. A.; Bergman, R. G.; Ellman, J. A.
Chem. Rev. 2010, 110, 624. (f) Wencel-Delord, J.; Droge, T.; Liu, F.;
Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. (g) Cho, S. H.; Kim, J. Y.;
Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (h) Sun, C.-L.; Li,
B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293.
~
€
Mancheno, O. G. Org. Lett. 2011, 13, 6066. (e) Ghobrial, M.; Schnurch,
M.; Mihovilovic, M. D. J. Org. Chem. 2011, 76, 8781. (f) Liu, W.; Liu, J.;
Ogawa, D.; Nishihara, Y.; Guo, Y.; Li, Z. Org. Lett. 2011, 13, 6272. (g)
Liu, P.; Zhou, C.- Y.; Xiang, S.; Che, C.-M. Chem. Commun. 2010, 46,
2739.
(5) (a) Richter, H.; Rohlmann, R.; Mancheno, O. G. Chem.;Eur. J.
2011, 17, 11622. (b) Xie, J.; Huang, Z.-Z. Angew. Chem., Int. Ed. 2010,
49, 10181. (c) Zhao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2008, 47, 7075.
(d) Zhao, L.; Basle, O.; Li, C.-J. Proc. Natl. Acad. Sci. U. S. A. 2009, 106,
4106.
(2) For a leading review, see:Labinger, J. A.; Bercaw, J. E. Nature
2002, 417, 507.
(6) Alagiri, K. A.; Ravikumara, G. S.; Prabhu, K. R. Chem. Com-
mun. 2011, 47, 11787.
(7) For a review, see:Schmuck, C.; Rupprecht, D. Synthesis 2007,
3095.
(3) For reviews, see: (a) Jones, K. M.; Klussmann, M. Synlett 2012,
159. (b) Li, C.-J.; Yoo, W.-J. Top. Curr. Chem. 2010, 292, 281. (c) Li,
C.-J. Acc. Chem. Res. 2009, 42, 335. (d) Yeung, C. S.; Dong, V. M. Chem.
Rev. 2011, 111, 1215.
r
10.1021/ol300147t
Published on Web 02/27/2012
2012 American Chemical Society