Towards Allopumiliotoxins: A Concise Synthesis of the Indolizidine Core
746 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.34–7.30 (m, 2 H), were washed with brine, dried with Na2SO4, and concentrated in
7.28–7.24 (m, 3 H), 6.39 (d, J = 9.7 Hz, 1 H), 4.86 (ddd, J = 10.6,
6.7, 3.8 Hz, 1 H), 4.73 (qd, J = 10.6, 6.7 Hz, 1 H), 3.74 (s, 3 H),
3.35 (dd, J = 11.6, 7.7 Hz, 1 H), 3.26 (dd, J = 7.7, 5.8 Hz, 1 H),
3.16 (d, J = 14.5 Hz, 1 H), 3.09 (dd, J = 12.6, 2.9 Hz, 1 H), 3.04–
2.88 (m, 4 H), 2.36–2.28 (m, 1 H), 2.23–2.14 (m, 1 H), 1.94–1.85
(m, 2 H), 1.79–1.59 (m, 2 H), 1.32 (s, 3 H), 1.24 (d, J = 6.7 Hz, 3
H) ppm. 13C NMR (75 MHz, CDCl3): δ = 177.0, 172.4, 172.3,
140.4, 136.3, 129.3, 128.8, 127.2, 106.9, 75.6, 68.7, 60.2, 59.7, 54.1,
52.4, 40.9, 37.2, 28.6, 26.6, 24.1, 22.6, 17.9 ppm. MS (ESI): m/z =
586 [M – OH]+. [α]2D5.6 = +46.33 (c = 1.1, CHCl3).
vacuo. The crude residue was purified on silica gel by column
chromatography (10 % EtOAc in hexanes) to afford enone 2
(0.036 g, 67%) as a colorless oil. Rf = 0.25 (SiO2, 20% EtOAc in
petroleum ether). IR (neat): ν
= 3392, 2926, 2856, 1622, 1460,
˜
max
1384, 1085, 839, 778 cm–1. H NMR (300 MHz, CDCl3): δ = 6.49
(d, J = 10.1 Hz, 1 H), 4.03 (d, J = 14.3 Hz, 1 H), 3.54–3.34 (m, 2
H), 3.26–3.14 (m, 1 H), 3.04 (dd, J = 14.1, 2.4 Hz, 1 H), 2.63–2.47
(m, 1 H), 2.46–2.25 (m, 1 H), 2.00–1.92 (m, 2 H), 1.90–1.76 (m, 2
H), 1.70–1.45 (m, 2 H), 1.26 (s, 3 H), 1.0 (d, J = 6.6 Hz, 3 H), 0.86
(s, 9 H), 0.02 (s, 6 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 197.0,
144.4, 131.3, 73.0, 69.2, 67.0, 55.1, 52.2, 35.9, 31.9, 25.8, 23.5, 22.7,
18.2, 17.8, –5.3, –5.4 ppm. HRMS (ESI): calcd for C19H36NO3Si
[M + H]+ 354.2459; found 354.2434. [α]3D0 = –10.65 (c = 1.0,
CHCl3).
1
Methyl (2R)-2-Hydroxy-2-{(2S)-1-[(2E,4S)-5-hydroxy-2-iodo-4-
methylpent-2-enyl]pyrrolidin-2-yl}propanoate (3): To a solution of
17 (0.188 g, 0.31 mmol) in MeOH (5 mL), NaBH4 (0.013 g,
0.34 mmol) was added at –20 °C under nitrogen, and the mixture
was stirred at 0 °C for 5 min. When still cold, the reaction was
quenched by the addition of saturated NH4Cl (3 mL), and the com-
pound was extracted with CH2Cl2 (2ϫ5 mL). The combined or-
ganic layers were dried with Na2SO4 and concentrated in vacuo.
The crude residue was purified on silica gel by column chromatog-
raphy (15% EtOAc in hexanes) to afford diol 3 (0.098 g, 79%) as
a colorless, oily liquid. Rf = 0.20 (SiO2, 30% EtOAc in petroleum
Supporting Information (see footnote on the first page of this arti-
1
cle): H and 13C NMR spectra for all new compounds.
Acknowledgments
B. V. D. V. and P. M. are grateful to the Council of Scientific and
Industrial Research (CSIR), New Delhi for the research fellow-
ships.
ether). IR (neat): ν
= 3396, 2956, 2926, 1730, 1623, 1452, 1255,
˜
max
1117, 1039 cm–1. 1H NMR (300 MHz, CDCl3): δ = 6.15 (d, J =
10.0 Hz, 1 H), 3.78 (s, 3 H), 3.51 (dd, J = 10.3, 5.2 Hz, 1 H), 3.38–
3.18 (m, 4 H), 3.15–3.05 (m, 1 H), 2.84–2.68 (m, 1 H), 2.42 (dd, J
= 16.9, 7.5 Hz, 1 H), 1.94–1.85 (m, 2 H), 1.80–1.66 (m, 2 H), 1.34
(s, 3 H), 0.96 (d, J = 6.6 Hz, 3 H) ppm. 13C NMR (75 MHz,
CDCl3): δ = 177.1, 146.8, 102.1, 75.7, 69.3, 66.5, 60.7, 54.1, 52.5,
39.2, 26.6, 24.0, 23.1, 16.4 ppm. HRMS (ESI): calcd for
C14H25INO4 [M + H]+ 398.0823; found 398.0809. [α]2D5.6 = –45.86
(c = 1.0, CHCl3).
[1] a) J. W. Daly, Prog. Chem. Org. Nat. Prod. 1982, 41, 205–340;
b) B. Witkop, E. Gossinger in The Alkaloids (Ed.: A. Brossi),
Academic Press, New York, 1983, vol. 21, chapter 5; c) T. Tok-
uyama, J. W. Daly, R. J. Highet, Tetrahedron 1984, 40, 1183–
1190; d) J. W. Daly, T. F. Spande in Alkaloids: Chemical and
Biological Perspectives (Ed.: S. W. Pelletier), Wiley, New York,
1986, vol. 4, chapter 1; e) J. W. Daly, H. M. Garraffo, T. F.
Spande in The Alkaloids (Ed. G. A. Cordell), Academic Press,
San Diego, 1993, vol. 43, pp. 185–288; f) J. W. Daly, S. I. Se-
cunda, H. M. Garraffo, T. F. Spande, A. Wisnieski, J. F. Co-
ver Jr., Toxicon 1994, 32, 657–663; g) J. W. Daly, T. F. Spande,
H. M. Garraffo, J. Nat. Prod. 2005, 68, 1556–1575.
[2] a) V. Erspamer, G. Falconieri Erspamer, P. Melchiorri, G. Maz-
zanti, Neuropharmacology 1985, 24, 783–792; b) S. Y. Wang,
J. Mitchell, D. B. Tikhonov, B. S. Zhorov, G. K. Wang, Mol.
Pharmacol. 2006, 69, 788–795.
[3] a) L. E. Overman, S. W. Goldstein, J. Am. Chem. Soc. 1984,
106, 5360–5361; b) S. W. Goldstein, L. E. Overman, M. H. Ra-
binowitz, J. Org. Chem. 1992, 57, 1179–1190; c) C. Caderas, R.
Lett, L. E. Overman, M. H. Rabinowitz, L. A. Robinson, M. J.
Sharp, J. Zablocki, J. Am. Chem. Soc. 1996, 118, 9073–9082;
d) S. Okamoto, M. Iwakubo, K. Kobayashi, F. Sato, J. Am.
Chem. Soc. 1997, 119, 6984–6990; e) X.-Q. Tang, J. Montgom-
ery, J. Am. Chem. Soc. 1999, 121, 6098–6099.
Methyl (2R)-2-{(2S)-1-[(2E,4S)-5-(tert-Butyldimethylsilyloxy)-2-
iodo-4-methylpent-2-enyl]pyrrolidin-2-yl}-2-hydroxypropanoate (18):
To a solution of diol 3 (0.076 g, 0.19 mmol) in DMF (1.5 mL) were
added imidazole (0.039 g, 0.57 mmol) and TBSCl (0.043 g,
0.28 mmol) at room temp. After 2 h, the reaction mixture was di-
luted with water (2 mL), and the compound was extracted with
Et2O (2ϫ3 mL). The combined organic layers were washed with
brine, dried with Na2SO4, and concentrated in vacuo. The crude
residue was purified on silica gel by column chromatography (5%
EtOAc in hexanes) to afford the silyl ether 18 (0.089 g, 91%) as a
colorless, oily liquid. Rf = 0.44 (SiO2, 10% EtOAc in petroleum
ether). IR (neat): ν
= 2924, 2855, 1738, 1461, 1106, 839,
˜
max
778 cm–1. H NMR (300 MHz, CDCl3): δ = 6.04 (d, J = 10.0 Hz,
1 H), 3.73 (s, 3 H), 3.42–3.29 (m, 2 H), 3.28–3.19 (m, 2 H), 3.04–
2.88 (m, 2 H), 2.79–2.68 (m, 1 H), 2.29–2.18 (m, 1 H), 1.92–1.81
(m, 2 H), 1.78–1.60 (m, 2 H), 1.30 (s, 3 H), 0.91 (d, J = 6.6 Hz, 3
H), 0.85 (s, 9 H), 0.01 (s, 6 H) ppm. 13C NMR (75 MHz, CDCl3):
δ = 177.0, 146.0, 103.9, 75.5, 68.6, 66.9, 59.8, 53.6, 52.3, 39.1, 26.8,
25.8, 24.1, 22.7, 18.2, 16.4, –5.2, –5.4 ppm. HRMS (ESI): calcd. for
C20H39INO4Si [M + H]+ 512.1688; found 512.1692. [α]2D5.6 = –25.40
(c = 1.0, CHCl3).
1
[4] a) C.-H. Tan, T. Stork, N. Feeder, A. B. Holmes, Tetrahedron
Lett. 1999, 40, 1397–1400; b) C.-H. Tan, A. B. Holmes, Chem.
Eur. J. 2001, 7, 1845–1854; c) D. L. Comins, S. Huang, C. L.
McArdle, C. L. Ingalls, Org. Lett. 2001, 3, 469–471; d) B.
Wang, Z. Zhong, G.-Q. Lin, Org. Lett. 2009, 11, 2011–2014; e)
B. Wang, K. Fang, G.-Q. Lin, Tetrahedron Lett. 2003, 44, 7981–
7984.
[5] a) L. E. Overman, S. W. Goldstein, J. Am. Chem. Soc. 1984,
106, 5360–5361; b) B. M. Trost, T. S. Scanlan, J. Am. Chem.
Soc. 1989, 111, 4988–4990; c) S. W. Goldstein, L. E. Overman,
M. H. Rabinowitz, J. Org. Chem. 1992, 57, 1179–1190; d) for
a review, see: A. S. Franklin, L. E. Overman, Chem. Rev. 1996,
96, 505–522; e) X.-Q. Tang, J. Montgomery, J. Am. Chem. Soc.
2000, 122, 6950–6954.
[6] a) S. Chandrasekhar, B. B. Parida, Ch. Rambabu, J. Org.
Chem. 2008, 73, 7826–7828; b) S. Chandrasekhar, B. V. D. Vi-
jaykumar, T. V. Pratap, Tetrahedron: Asymmetry 2008, 19, 746–
(8R,8aS)-6-[(1E,2S)-3-(tert-Butyldimethylsilyloxy)-2-methyl-1-
propylidene]-8-hydroxy-8-methylhexahydroindolizin-7(1H)-one (2):
A solution of 18 (0.077 g, 0.15 mmol) in dry THF (5 mL) was co-
oled to –78 °C under nitrogen, and nBuLi (125 μL, 0.31 mmol) was
added. The reaction mixture was stirred at the same temperature
for 30 min and was monitored by TLC for the consumption of
starting material. The reaction was quenched by the addition of a
saturated solution of NH4Cl (4 mL), and the compound was ex-
tracted with ethyl acetate (2ϫ5 mL). The combined organic layers
Eur. J. Org. Chem. 2012, 988–994
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
993