the corresponding carbon analogue (X = CH2) had been
overlooked until quite recently.7,8 This is due to the
difficulties posed by the desired [1,5]-hydride shift of the
CÀH bond without the assistance of the adjacent heteroa-
tom. Aspart of ourrecentprogram to developnew catalytic
CÀH bond functionalization methodologies,6 we have
disclosed that the benzylic CÀH bond without an
adjacent heteroatom could also participate in this type
of transformation, giving 3-aryltetraline derivatives.7
Quite recently, several other groups also reported the
platinum-catalyzed benzylic CÀH bond functionaliza-
tion that led to indene derivatives.8 Stimulated by these
achievements, we turned our attention to the construc-
tion of another important substructure by exploiting
this type of transformation.
6-endo cyclization) occurred successively to afford isoquino-
line derivatives in good to excellent chemical yields. The
application of this methodology to the formal synthesis of
(()-tetrahydropalmatine is also demonstrated.
Scheme 1. C(sp3)ÀH Bond Functionalizaiton via Internal Re-
dox Process
We describe herein an expeditious route to an iso-
quinoline skeleton, which is frequently encountered
in numerous biologically active compounds, via the
hydride shift/cyclization sequence.9 In this reaction, three
transformations (imine formation, [1,5]-hydride shift, and
(4) (a) Reinhoudt, D. N.; Visser, G. W.; Verboom, W.; Benders,
P. H.; Pennings, M. L. M. J. Am. Chem. Soc. 1983, 105, 4775. (b)
Verboom, W.; Reinhoudt, D. N.; Visser, R.; Harkema, S. J. Org. Chem.
1984, 49, 269. (c) Nijhuis, W. H. N.; Verboom, W.; Reinhoudt, D. N.;
Harkema, S. J. Am. Chem. Soc. 1987, 109, 3136. (d) Groenen, L. C.;
Verboom, W.; Nijhuis, W. H. N.; Reinhoudt, D. N.; Van Hummel, G. J.;
Teil, D. Tetrahedron 1988, 14, 4627. (e) Nijhuis, W. H. N.; Verboom, W.;
Abu El-Fadl, A.; Harkema, S.; Reinhoudt, D. N. J. Org. Chem. 1989, 54,
199. (f) Nijhuis, W. H. N.; Verboom, W.; Abu El-Fadl, A.; Van
Hummel, G. J.; Reinhoudt, D. N. J. Org. Chem. 1989, 54, 209. (g) De
Boeck, B.; Janousek, Z.; Viehe, H. G. Tetrahedron 1995, 51, 13239. (h)
Zhang, C.; Kanta De, C.; Mal, R.; Seidel, D. J. Am. Chem. Soc. 2008,
130, 416. (i) Che, X.; Sheng, L.; Dang, Q.; Bai, X. Synlett 2008, 2373. (j)
Polonka-Balint, A.; Saraceno, C.; Ludanyi, K.; Benyei, A.; Matyus, P.
Synlett 2008, 2846. (k) Murarka, S.; Zhang, C.; Konieczynska, M. D.;
Seidel, D. Org. Lett. 2009, 11, 129. (l) Ruble, J. C.; Hurd, A. R.; Johnson,
T. A.; Sherry, D. A.; Barbachyn, M. R.; Toogood, P. L.; Bundy, G. L.;
Graber, D. R.; Kamilar, G. M. J. Am. Chem. Soc. 2009, 131, 3991. (m)
McQuaid, K. M.; Long, J. Z.; Sames, D. Org. Lett. 2009, 11, 2972. (n)
We have already reported that the internal redox reac-
tion that employed imine as an electrophilic partner could
be achieved in a one-pot process from aldehyde and amine
(without isolation of the corresponding imine).6a At the
outset, a solution of aldehyde 3a with p-methoxyphenethyl
moiety and TsNH2 in ClCH2CH2Cl was exposed to 10 mol
% of acid at reflux temperature (Table 1). Various Lewis
ꢀ
ꢀ
ꢀ
ꢀ
€
ꢀ
ꢀ ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
Foldi, A. A.; Ludanyi, K.; Benyei, A. C.; Matyus, P. Synlett 2010, 2109.
ꢀ
(o) Dunkel, P.; Turos, D.; Benyei, A.; Ludanyi, K.; Matyus, P. Tetra-
hedron 2010, 2331.
(5) Examples of enantioselective internal redox reactions: (a)
Murarka, S.; Deb, I.; Zhang, C.; Seidel, D. J. Am. Chem. Soc. 2009,
131, 13226. (b) Kang, Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem. Soc.
2010, 132, 11847. (c) Cao, W.; Liu, X.; Wang, W.; Lin, L.; Feng, X. Org.
Lett. 2011, 13, 600. (d) Zhou, G.; Liu, F.; Zhang, J. Chem.;Eur. J. 2011,
17, 3101.
(6) (a) Mori, K.; Ohshima, Y.; Ehara, K.; Akiyama, T. Chem. Lett.
2009, 38, 524. (b) Mori, K.; Kawasaki, T.; Sueoka, S.; Akiyama, T. Org.
Lett. 2010, 12, 1732. For an asymmetric version of internal redox
reaction catalyzed by chiral phosphoric acid, see: (c) Mori, K.; Ehara,
K.; Kurihara, K.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 6166.
(7) (a) Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem. Soc. 2011,
133, 2424. (b) Mori, K.; Sueoka, S.; Akiyama, T. Chem. Lett. 2011, 40,
1386.
(8) (a) Tobisu, M.; Nakai, H.; Chatani, N. J. Org. Chem. 2009, 74,
5471. (b) Yang, S.; Li, Z.; Jian, X.; He, C. Angew. Chem., Int. Ed. 2009,
48, 3999. Fillion’s group found that the p-methoxyphenyl group is
important for the benzylic hydride shift/ring closure for the formation
of tetraline derivatives. See: (c) Mahoney, S. J.; Moon, D. T.; Hollinger,
J.; Fillion, E. Tetrahedron Lett. 2009, 50, 4706. For hydride shifts from
di- and/or triarylmethane, see: (d) Bajracharya, G. B.; Pahadi, N. K.;
Gridnev, I. D.; Yamamoto, Y. J. Org. Chem. 2006, 71, 6204. (e) Alajarin,
M.; Bonillo, B.; Ortin, M.-M.; Sanchez-Andrada, P.; Vidal, A.; Orenes,
R.-A. Org. Biomol. Chem. 2010, 8, 4690.
acids, such as SnCl4, TiCl4, and BF3 OEt2, were ineffec-
3
tive, and only corresponding imine 5a was obtained after
24 h (entries 1À3). Gratifyingly, FeCl3 promoted the two
desired reactions (imine formation and internal redox
reaction) to give isoquinoline 4a in moderate yield (62%,
entry 4). Further screening of the catalyst revealed that
strong Brønsted acids and lanthanoid triflates pro-
moted this transformation efficiently: on treatment with
TsOH H2O, 4awas obtained in 39% yield (entry 5). TfOH
3
was more effective, affording 4a in 78% isolated yield
(entry 6). Sc(OTf)3 was the catalyst of choice, and 4a was
obtained in excellent yield (90%, entry 8). Fortunately, the
catalyst loading of Sc(OTf)3 could be reduced to 5 mol %
without sacrificing the chemical yield (92%, entry 9).
Further examination suggested that the strong electro-
philicity of the imine moiety was crucial for this transfor-
mation: when aniline was employed in place of TsNH2, the
(9) Tietze’s group found that this type of cyclic amine formation
€
reaction occurred in steroidal compounds. See: (a) Wolfing, J.; Frank,
ꢀ
E.; Schneider, G.; Tietze, L. F. Angew. Chem., Int. Ed. 1999, 38, 200. (b)
ꢀ
Wolfing, J.; Frank, E.; Schneider, G.; Tietze, L. F. Eur. J. Org. Chem.
€
(10) Investigation of other solvent systems (toluene, benzene, cyclo-
hexane, and CH3CN) suggested that nonpolar solvents were suitable for
this reaction, and ClCH2CH2Cl was found to be the solvent of choice.
ꢀ
€
1999, 3013. (c) Wolfing, J.; Frank, E.; Schneider, G.; Tietze, L. F. Eur. J.
Org. Chem. 2004, 90.
Org. Lett., Vol. 14, No. 6, 2012
1437