1496
T. Shoji et al. / Tetrahedron Letters 53 (2012) 1493–1496
A. J. Org. Chem. 2005, 70, 3939–3949; (h) Shoji, T.; Ito, S.; Toyota, K.; Iwamoto,
The 1-(indol-2-yl)azulene derivatives were available by the
T.; Yasunami, M.; Morita, N. Eur. J. Org. Chem. 2009, 4307–4315; (i) Nakagawa,
K.; Yokoyama, T.; Toyota, K.; Morita, N.; Ito, S.; Tahata, S.; Ueda, M.; Kawakami,
J.; Yokoyama, M.; Kanai, Y.; Ohta, K. Tetrahedron 2010, 66, 8304–8312; (j) Ito,
S.; Shoji, T.; Morita, N. Synlett 2011, 2279–2298.
reaction of the corresponding azulene derivatives with 2-indoli-
nones in the presence of Tf2O, following the hydrolysis with aq.
K2CO3. Under the reaction conditions, we found 6-tert-butyl-1-
(methylthio)azulene (11) was converted into 1,10-biazulene deriv-
ative 24. By the Tf2O-activated V–H type reaction of 14, novel ipso-
substitution was clarified to give 2 in good yield. These results sug-
gest dihydropyridine moiety at the 1-position behaves as a good
leaving group, as well as isopropyl and tert-butyl groups. These re-
sults would warrant the development of new synthetic methodol-
ogy for azulene derivatives.
6. (a) Shoji, T.; Yokoyama, R.; Ito, S.; Watanabe, M.; Toyota, K.; Yasunami, M.;
Morita, N. Tetrahedron Lett. 2007, 48, 1099–1103; (b) Shoji, T.; Ito, S.;
Watanabe, M.; Toyota, K.; Yasunami, M.; Morita, N. Tetrahedron Lett. 2007,
48, 3009–3012; (c) Shoji, T.; Ito, S.; Toyota, K.; Yasunami, M.; Morita, N.
Tetrahedron Lett. 2007, 48, 4999–5002; (d) Higashi, J.; Shoji, T.; Ito, S.; Toyota,
K.; Yasunami, M.; Morita, N. Eur. J. Org. Chem. 2008, 5823–5831; (e) Shoji, T.;
Ito, S.; Toyota, K.; Morita, N. Eur. J. Org. Chem. 2010, 1059–1069; (f) Shoji, T.; Ito,
S.; Higashi, J.; Morita, N. Eur. J. Org. Chem. 2011, 5311–5322; (g) Shoji, T.; Inoue,
Y.; Ito, S.; Okujima, T.; Morira, N. Heterocycles 2012, 85, 35–41.
7. The C–N bond formation between 2-bromoazulene and indole under the
palladium-catalyzed Hartwig–Buchwald’s condition was reported by our group
Yokoyama, R.; Ito, S.; Okujima, T.; Kubo, T.; Yasunami, M.; Tajiri, A.; Morita, N.
Tetrahedron 2003, 59, 8191–8198.
Acknowledgment
8. A typical procedure: Tf2O (203 mg, 0.72 mmol) in CH2Cl2 (5 mL) were added at
room temperature to a solution of azulene (1) (67 mg, 0.52 mmol) and 2-
indolinone (101 mg, 0.76 mmol) in CH2Cl2 (15 mL). The resulting solution was
stirred at the same temperature for 2.5 hours. The reaction mixture was poured
into a 2 M K2CO3 solution, extracted with AcOEt, washed with brine and dried
over Na2SO4. The solvent was removed under reduced pressure and the residue
was purified by column chromatography on silica gel with hexane/AcOEt
(10:1) as an eluent to give 1-(indol-2-yl)azulene (2) (113 mg, 89%) as green
crystals. 1H NMR (500 MHz, CDCl3): ppm; dH = 8.80 (d, 1H, J = 9.5 Hz, 8-H), 8.33
(d, 1H, J = 9.5 Hz, 4-H), 8.25 (br s, 1H, NH of indole), 8.06 (d, 1H, J = 4.0 Hz, 2-H),
7.66 (d, 1H, J = 7.5 Hz, 40-H of indole), 7.61 (t, 1H, J = 9.5 Hz, 6-H), 7.43 (d, 1H,
J = 4.0 Hz, 3-H), 7.41 (d, 1H, J = 7.5 Hz, 80-H of indole), 7.22–7.13 (m, 4H, 5,7-H,
5,6-H of indole), 6.79 (s, 1H, 30-H of indole) ppm; 13C NMR (125 MHz):
dC = 142.19 (C-8a), 138.78 (C-6), 137.63 (C-4), 136.55 (C-8a0 of indole), 136.01
(C-8), 135.62 (C-3a), 135.48 (C-2), 134.76 (C-1), 129.54 (C-3a0 of indole),
123.93, 123.81, 121.73 (C-7), 120.21, 120.09 (C-40 of indole), 117.93 (C-3),
110.61 (C-80 of indole), 101.20 (C-30 of indole) ppm.
9. Shoji, T.; Okada, K.; Ito, S.; Toyota, K.; Morita, N. Tetrahedron Lett. 2010, 51,
5127–5130.
10. Shoji, T.; Higashi, H.; Ito, S.; Toyota, K.; Asao, T.; Fujimori, K.; Yasunami, M.;
Morita, N. Eur. J. Org. Chem. 2008, 45, 1242–1252.
11. The ester function of 2-arylazulenes at the 1-position exhibit decarboxylation
under the acidic conditions (a) Morita, T.; Takase, K. Bull. Chem. Soc. Jpn. 1982,
55, 1144–1152; (b) Morita, T.; Abe, N.; Takase, K. J. Chem. Soc., Perkin Trans. 1
2000, 3063–3070.
12. Hafner, K.; Moritz, K. L. Justus Liebigs Ann. Chem. 1962, 656, 40–53.
13. Shoji, T.; Ito, S.; Okujima, T.; Higashi, J.; Yokoyama, R.; Toyota, K.; Yasunami,
M.; Morita, N. Eur. J. Org. Chem. 2009, 1554–1563.
This work was supported by a Grant-in-Aid for Research Activ-
ity Start-up (Grant 22850007 to T.S.) from the Ministry of Educa-
tion, Culture, Sports, Science, and Technology, Japan.
References and notes
1. (a) Van Order, R. B.; Lindwall, H. G. Chem. Rev. 1942, 30, 69–96; (b) Robinson, B.
Chem. Rev. 1963, 63, 373–401; (c) Robinson, B. Chem. Rev. 1969, 69, 227–250;
(d) Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem. Rev. 2010, 110, 4489–
4497; (e) Matsnev, A.; Noritake, S.; Nomura, Y.; Tokunaga, E.; Nakamura, S.;
Shibata, N. Angew. Chem., Int. Ed. 2010, 49, 572–576.
2. Xu, X.-H.; Liu, G.-K.; Azuma, A.; Tokunaga, E.; Shibata, N. Org. Lett. 2011, 13,
4854–4857.
3. Black, D. S. C.; Rezaie, R. Tetrahedron Lett. 1999, 40, 4251–4254.
4. Zeller, K.-P. In Azulene in Methoden der Organischen Chemie (Houben-Weyl); Kropf,
H., Ed.; Thieme: Stuttgart, Germany, 1985; Vol. V, pp 127–418. 4th ed., part 2c.
5. (a) Ito, S.; Inabe, H.; Okujima, T.; Morita, N.; Watanabe, M.; Imafuku, K.
Tetrahedron Lett. 2000, 41, 8343–8347; (b) Ito, S.; Inabe, H.; Okujima, T.; Morita,
N.; Watanabe, M.; Harada, N.; Imafuku, K. Tetrahedron Lett. 2001, 42, 1085–
1089; (c) Ito, S.; Inabe, H.; Okujima, T.; Morita, N.; Watanabe, M.; Harada, N.;
Imafuku, K. J. Org. Chem. 2001, 66, 7090–7101; (d) Ito, S.; Okujima, T.; Morita, N.
Tetrahedron Lett. 2002, 43, 1261–1264; (e) Ito, S.; Terazono, T.; Kubo, T.;
Okujima, T.; Morita, N.; Murafuji, T.; Sugihara, Y.; Fujimori, K.; Kawakami, J.;
Tajiri, A. Tetrahedron 2004, 60, 5357–5366; (f) Shoji, T.; Kikuchi, S.; Ito, S.;
Morita, N. Heterocycles 2005, 66, 91–94; (g) Ito, S.; Ando, M.; Nomura, A.;
Morita, N.; Kabuto, C.; Mukai, H.; Ohta, K.; Kawakami, J.; Yoshizawa, A.; Tajiri,